Papers
Topics
Authors
Recent
2000 character limit reached

The Laplace Transform and Quantum Curves

Published 24 Jun 2024 in math-ph, hep-th, math.AG, and math.MP | (2406.17081v2)

Abstract: A Laplace transform that maps the topological recursion (TR) wavefunction to its $x$-$y$ swap dual is defined. This transform is then applied to the construction of quantum curves. General results are obtained, including a formula for the quantisation of many spectral curves of the form $exP_2(ey) - P_1(ey) = 0$ where $P_1$ and $P_2$ are coprime polynomials; an important class that contains interesting spectral curves related to mirror symmetry and knot theory that have, heretofore, evaded the general TR-based methods previously used to derive quantum curves. Quantum curves known in the literature are reproduced, and new quantum curves are derived. In particular, the quantum curve for the $T$-equivariant Gromov-Witten theory of $\mathbb{P}(a,b)$ is obtained.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.