Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composite Material Design for Optimized Fracture Toughness Using Machine Learning (2406.16166v1)

Published 23 Jun 2024 in cond-mat.mtrl-sci and cs.LG

Abstract: This paper investigates the optimization of 2D and 3D composite structures using ML techniques, focusing on fracture toughness and crack propagation in the Double Cantilever Beam (DCB) test. By exploring the intricate relationship between microstructural arrangements and macroscopic properties of composites, the study demonstrates the potential of ML as a powerful tool to expedite the design optimization process, offering notable advantages over traditional finite element analysis. The research encompasses four distinct cases, examining crack propagation and fracture toughness in both 2D and 3D composite models. Through the application of ML algorithms, the study showcases the capability for rapid and accurate exploration of vast design spaces in composite materials. The findings highlight the efficiency of ML in predicting mechanical behaviors with limited training data, paving the way for broader applications in composite design and optimization. This work contributes to advancing the understanding of ML's role in enhancing the efficiency of composite material design processes.

Summary

We haven't generated a summary for this paper yet.