Papers
Topics
Authors
Recent
2000 character limit reached

An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis

Published 20 Jun 2024 in eess.IV and cs.AI | (2406.14735v1)

Abstract: Current imaging methods for diagnosing BC are associated with limited sensitivity and specificity and modest positive predictive power. The recent progress in image analysis using AI has created great promise to improve breast cancer (BC) diagnosis and subtype differentiation. In this case, novel quantitative computational methods, such as radiomics, have been developed to improve the sensitivity and specificity of early BC diagnosis and classification. The potential of radiomics in improving the diagnostic efficacy of imaging studies has been shown in several studies. In this review article, we discuss the radiomics workflow and current hand-crafted radiomics methods in the diagnosis and classification of BC based on most recent studies on different imaging modalities, e.g. MRI, mammography, contrast-enhanced spectral mammography (CESM), ultrasound imaging, and digital breast tumosynthesis (DBT). We also discuss current challenges and potential strategies to improve the specificity and sensitivity of radiomics in breast cancer to help achieve a higher level of BC classification and diagnosis in the clinical setting. The growing field of AI incorporation with imaging information has opened a great opportunity to provide a higher level of care for BC patients.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.