Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Sum of Segmented Correlation: An Efficient Method for Spectra Matching in Hyperspectral Images (2406.13006v1)

Published 18 Jun 2024 in cs.CV, cs.ET, and eess.IV

Abstract: Matching a target spectrum with known spectra in a spectral library is a common method for material identification in hyperspectral imaging research. Hyperspectral spectra exhibit precise absorption features across different wavelength segments, and the unique shapes and positions of these absorptions create distinct spectral signatures for each material, aiding in their identification. Therefore, only the specific positions can be considered for material identification. This study introduces the Weighted Sum of Segmented Correlation method, which calculates correlation indices between various segments of a library and a test spectrum, and derives a matching index, favoring positive correlations and penalizing negative correlations using assigned weights. The effectiveness of this approach is evaluated for mineral identification in hyperspectral images from both Earth and Martian surfaces.

Citations (1)

Summary

We haven't generated a summary for this paper yet.