Agriculture-Vision Challenge 2024 -- The Runner-Up Solution for Agricultural Pattern Recognition via Class Balancing and Model Ensemble
Abstract: The Agriculture-Vision Challenge at CVPR 2024 aims at leveraging semantic segmentation models to produce pixel level semantic segmentation labels within regions of interest for multi-modality satellite images. It is one of the most famous and competitive challenges for global researchers to break the boundary between computer vision and agriculture sectors. However, there is a serious class imbalance problem in the agriculture-vision dataset, which hinders the semantic segmentation performance. To solve this problem, firstly, we propose a mosaic data augmentation with a rare class sampling strategy to enrich long-tail class samples. Secondly, we employ an adaptive class weight scheme to suppress the contribution of the common classes while increasing the ones of rare classes. Thirdly, we propose a probability post-process to increase the predicted value of the rare classes. Our methodology achieved a mean Intersection over Union (mIoU) score of 0.547 on the test set, securing second place in this challenge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.