Data Petri Nets meet Probabilistic Programming (Extended version) (2406.11883v1)
Abstract: Probabilistic programming (PP) is a programming paradigm that allows for writing statistical models like ordinary programs, performing simulations by running those programs, and analyzing and refining their statistical behavior using powerful inference engines. This paper takes a step towards leveraging PP for reasoning about data-aware processes. To this end, we present a systematic translation of Data Petri Nets (DPNs) into a model written in a PP language whose features are supported by most PP systems. We show that our translation is sound and provides statistical guarantees for simulating DPNs. Furthermore, we discuss how PP can be used for process mining tasks and report on a prototype implementation of our translation. We also discuss further analysis scenarios that could be easily approached based on the proposed translation and available PP tools.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.