Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul (2406.11325v2)

Published 17 Jun 2024 in eess.SP and cs.LG

Abstract: We consider the problem of pilot-aided, uplink channel estimation in a distributed massive multiple-input multiple-output (MIMO) architecture, in which the access points are connected to a central processing unit via fiber-optical fronthaul links, carrying a two-level-quantized version of the received analog radio-frequency signal. We adapt to this architecture the deep-learning-based channel-estimation algorithm recently proposed by Nguyen et al. (2023), and explore its robustness to the additional signal distortions (beyond 1-bit quantization) introduced in the considered architecture by the automatic gain controllers (AGCs) and by the comparators. These components are used at the access points to generate the two-level analog waveform from the received signal. Via simulation results, we illustrate that the proposed channel-estimation method outperforms significantly the Bussgang linear minimum mean-square error channel estimator, and it is robust against the additional impairments introduced by the AGCs and the comparators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.