Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation (2406.10785v2)

Published 16 Jun 2024 in cs.CL and cs.AI

Abstract: In this paper, we introduce \textbf{Share}d \textbf{Lo}w \textbf{R}ank \textbf{A}daptation (ShareLoRA), a LLM fine-tuning technique that balances parameter efficiency, adaptability, and robustness without compromising performance. By strategically sharing the low-rank weight matrices across different layers, ShareLoRA achieves 44\% to 96\% reduction in trainable parameters compared to standard LoRA, alongside a substantial decrease in memory overhead. This efficiency gain scales with model size, making ShareLoRA particularly advantageous for resource-constrained environments. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across diverse models, including RoBERTa, GPT-2, and LLaMA series (1, 2, and 3). It consistently outperforms LoRA in zero-shot, few-shot, and continual fine-tuning scenarios, achieving up to 1.2\% average accuracy improvement, and enhanced generalization across domains. In continual learning settings, ShareLoRA achieves 1.2\% higher accuracy on GSM8K, 0.6\% on HumanEval, and 0.5\% on both MMLU and MMLU-Pro. Our results demonstrate that ShareLoRA supports high-quality fine-tuning while offering strong generalization and continual adaptation across various model scales and diverse tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube