Papers
Topics
Authors
Recent
2000 character limit reached

Advancing Roadway Sign Detection with YOLO Models and Transfer Learning

Published 11 Jun 2024 in cs.CV and cs.CY | (2406.09437v1)

Abstract: Roadway signs detection and recognition is an essential element in the Advanced Driving Assistant Systems (ADAS). Several artificial intelligence methods have been used widely among of them YOLOv5 and YOLOv8. In this paper, we used a modified YOLOv5 and YOLOv8 to detect and classify different roadway signs under different illumination conditions. Experimental results indicated that for the YOLOv8 model, varying the number of epochs and batch size yields consistent MAP50 scores, ranging from 94.6% to 97.1% on the testing set. The YOLOv5 model demonstrates competitive performance, with MAP50 scores ranging from 92.4% to 96.9%. These results suggest that both models perform well across different training setups, with YOLOv8 generally achieving slightly higher MAP50 scores. These findings suggest that both models can perform well under different training setups, offering valuable insights for practitioners seeking reliable and adaptable solutions in object detection applications.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.