Papers
Topics
Authors
Recent
2000 character limit reached

Covariate Selection for Optimizing Balance with an Innovative Adaptive Randomization Approach

Published 13 Jun 2024 in stat.ME | (2406.08968v2)

Abstract: Balancing influential covariates is crucial for valid treatment comparisons in clinical studies. While covariate-adaptive randomization is commonly used to achieve balance, its performance can be inadequate when the number of baseline covariates is large. It is therefore essential to identify the influential factors associated with the outcome and ensure balance among these critical covariates. In this article, we propose a novel adaptive randomization approach that integrates the patients' responses and covariates information to select sequentially significant covariates and maintain their balance. We establish theoretically the consistency of our covariate selection method and demonstrate that the improved covariate balancing, as evidenced by a faster convergence rate of the imbalance measure, leads to higher efficiency in estimating treatment effects. Furthermore, we provide extensive numerical and empirical studies to illustrate the benefits of our proposed method across various settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.