Maximizing the Maximum Degree in Ordered Nearest Neighbor Graphs
Abstract: For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the ordered Nearest Neighbor Graph is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of $n$ points in $\mathbb{R}d$, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least $\log{n}/(4d)$. Apart from the $1/(4d)$ factor, this bound is the best possible. As for the abstract setting, we show that for every $n$-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree $\Omega(\sqrt{\log{n}/\log\log{n}})$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.