Papers
Topics
Authors
Recent
2000 character limit reached

Orthogonalized Estimation of Difference of $Q$-functions

Published 12 Jun 2024 in stat.ML, cs.LG, math.OC, and stat.ME | (2406.08697v2)

Abstract: Offline reinforcement learning is important in many settings with available observational data but the inability to deploy new policies online due to safety, cost, and other concerns. Many recent advances in causal inference and machine learning target estimation of causal contrast functions such as CATE, which is sufficient for optimizing decisions and can adapt to potentially smoother structure. We develop a dynamic generalization of the R-learner (Nie and Wager 2021, Lewis and Syrgkanis 2021) for estimating and optimizing the difference of $Q\pi$-functions, $Q\pi(s,1)-Q\pi(s,0)$ (which can be used to optimize multiple-valued actions). We leverage orthogonal estimation to improve convergence rates in the presence of slower nuisance estimation rates and prove consistency of policy optimization under a margin condition. The method can leverage black-box nuisance estimators of the $Q$-function and behavior policy to target estimation of a more structured $Q$-function contrast.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.