Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uses of Active and Passive Learning in Stateful Fuzzing (2406.08077v1)

Published 12 Jun 2024 in cs.SE

Abstract: This paper explores the use of active and passive learning, i.e.\ active and passive techniques to infer state machine models of systems, for fuzzing. Fuzzing has become a very popular and successful technique to improve the robustness of software over the past decade, but stateful systems are still difficult to fuzz. Passive and active techniques can help in a variety of ways: to compare and benchmark different fuzzers, to discover differences between various implementations of the same protocol, and to improve fuzzers.

Summary

We haven't generated a summary for this paper yet.