Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Capacity bounds on integral flows and the Kostant partition function (2406.07838v3)

Published 12 Jun 2024 in math.CO

Abstract: The type $A$ Kostant partition function is an important combinatorial object with various applications: it counts integer flows on the complete directed graph, computes Hilbert series of spaces of diagonal harmonics, and can be used to compute weight and tensor product multiplicities of representations. In this paper we study asymptotics of the Kostant partition function, improving on various previously known lower bounds and settling conjectures of O'Neill and Yip. Our methods build upon recent results and techniques of Br\"and\'en-Leake-Pak, who used Lorentzian polynomials and Gurvits' capacity method to bound the number of lattice points of transportation and flow polytopes. Finally, we also give new two-sided bounds using the Lidskii formulas from subdivisions of flow polytopes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: