Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations (2406.07789v1)

Published 12 Jun 2024 in math.NA and cs.NA

Abstract: In this paper, the a posteriori error estimates of the exponential midpoint method for time discretization are studied for linear and semilinear parabolic equations. Using the exponential midpoint approximation defined by a continuous and piecewise linear interpolation of nodal values yields the suboptimal order estimates. Based on the property of the entire function, we introduce a continuous and piecewise quadratic time reconstruction of the exponential midpoint method to derive the optimal order estimates, and the error bounds are solely dependent on the discretization parameters, the data of the problem and the approximation of the entire function. Several numerical examples are implemented to illustrate the theoretical results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.