Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards objective and interpretable speech disorder assessment: a comparative analysis of CNN and transformer-based models (2406.07576v1)

Published 7 Jun 2024 in eess.AS, cs.LG, and cs.SD

Abstract: Head and Neck Cancers (HNC) significantly impact patients' ability to speak, affecting their quality of life. Commonly used metrics for assessing pathological speech are subjective, prompting the need for automated and unbiased evaluation methods. This study proposes a self-supervised Wav2Vec2-based model for phone classification with HNC patients, to enhance accuracy and improve the discrimination of phonetic features for subsequent interpretability purpose. The impact of pre-training datasets, model size, and fine-tuning datasets and parameters are explored. Evaluation on diverse corpora reveals the effectiveness of the Wav2Vec2 architecture, outperforming a CNN-based approach, used in previous work. Correlation with perceptual measures also affirms the model relevance for impaired speech analysis. This work paves the way for better understanding of pathological speech with interpretable approaches for clinicians, by leveraging complex self-learnt speech representations.

Summary

We haven't generated a summary for this paper yet.