Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Model order reduction for seismic applications (2406.07207v1)

Published 11 Jun 2024 in math.NA and cs.NA

Abstract: We propose a model order reduction approach to speed up the computation of seismograms, i.e. the solution of the seismic wave equation evaluated at a receiver location, for different model parameters. Our approach achieves a reduction of the unknowns by a factor of approximately 1000 for various numerical experiments for a 2D subsurface model of Groningen, the Netherlands, even if the wave speeds of the subsurface are relatively varied. Moreover, using parallel computing, the reduced model can approximate the (time domain) seismogram in a lower wall clock time than an implicit Newmark-beta method. To realize this reduction, we exploit the fact that seismograms are low-pass filtered for the observed seismic events by considering the Laplace-transformed problem in frequency domain. Therefore, we can avoid the high frequencies that would require many reduced basis functions to reach the desired accuracy and generally make the reduced order approximation of wave problems challenging. Instead, we can prove for our ansatz that for a fixed subsurface model the reduced order approximation converges exponentially fast in the frequency range of interest in the Laplace domain. We build the reduced model from solutions of the Laplace-transformed problem via a (Proper Orthogonal Decomposition-)Greedy algorithm targeting the construction of the reduced model to the time domain seismograms; the latter is achieved by using an a posteriori error estimator that does not require computing any time domain counterparts. Finally, we show that we obtain a stable reduced model thus overcoming the challenge that standard model reduction approaches do not necessarily yield a stable reduced model for wave problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: