Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness to Missing Data: Breakdown Point Analysis (2406.06804v1)

Published 10 Jun 2024 in econ.EM

Abstract: Missing data is pervasive in econometric applications, and rarely is it plausible that the data are missing (completely) at random. This paper proposes a methodology for studying the robustness of results drawn from incomplete datasets. Selection is measured as the squared Hellinger divergence between the distributions of complete and incomplete observations, which has a natural interpretation. The breakdown point is defined as the minimal amount of selection needed to overturn a given result. Reporting point estimates and lower confidence intervals of the breakdown point is a simple, concise way to communicate the robustness of a result. An estimator of the breakdown point of a result drawn from a generalized method of moments model is proposed and shown root-n consistent and asymptotically normal under mild assumptions. Lower confidence intervals of the breakdown point are simple to construct. The paper concludes with a simulation study illustrating the finite sample performance of the estimators in several common models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com