Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hinge-FM2I: An Approach using Image Inpainting for Interpolating Missing Data in Univariate Time Series (2406.06631v1)

Published 8 Jun 2024 in cs.LG and stat.ML

Abstract: Accurate time series forecasts are crucial for various applications, such as traffic management, electricity consumption, and healthcare. However, limitations in models and data quality can significantly impact forecasts accuracy. One common issue with data quality is the absence of data points, referred to as missing data. It is often caused by sensor malfunctions, equipment failures, or human errors. This paper proposes Hinge-FM2I, a novel method for handling missing data values in univariate time series data. Hinge-FM2I builds upon the strengths of the Forecasting Method by Image Inpainting (FM2I). FM2I has proven effective, but selecting the most accurate forecasts remain a challenge. To overcome this issue, we proposed a selection algorithm. Inspired by door hinges, Hinge-FM2I drops a data point either before or after the gap (left/right-hinge), then use FM2I for imputation, and then select the imputed gap based on the lowest error of the dropped data point. Hinge-FM2I was evaluated on a comprehensive sample composed of 1356 time series, extracted from the M3 competition benchmark dataset, with missing value rates ranging from 3.57\% to 28.57\%. Experimental results demonstrate that Hinge-FM2I significantly outperforms established methods such as, linear/spline interpolation, K-Nearest Neighbors (K-NN), and ARIMA. Notably, Hinge-FM2I achieves an average Symmetric Mean Absolute Percentage Error (sMAPE) score of 5.6\% for small gaps, and up to 10\% for larger ones. These findings highlight the effectiveness of Hinge-FM2I as a promising new method for addressing missing values in univariate time series data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.