Papers
Topics
Authors
Recent
2000 character limit reached

Mastering truss structure optimization with tree search

Published 10 Jun 2024 in cs.CE | (2406.06145v5)

Abstract: This study investigates the combined use of generative grammar rules and Monte Carlo Tree Search (MCTS) for optimizing truss structures. Our approach accommodates intermediate construction stages characteristic of progressive construction settings. We demonstrate the significant robustness and computational efficiency of our approach compared to alternative reinforcement learning frameworks from previous research activities, such as Q-learning or deep Q-learning. These advantages stem from the ability of MCTS to strategically navigate large state spaces, leveraging the upper confidence bound for trees formula to effectively balance exploitation-exploration trade-offs. We also emphasize the importance of early decision nodes in the search tree, reflecting design choices crucial for highly performative solutions. Additionally, we show how MCTS dynamically adapts to complex and extensive state spaces without significantly affecting solution quality. While the focus of this paper is on truss optimization, our findings suggest MCTS as a powerful tool for addressing other increasingly complex engineering applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.