Papers
Topics
Authors
Recent
2000 character limit reached

Neuro-TransUNet: Segmentation of stroke lesion in MRI using transformers

Published 10 Jun 2024 in eess.IV and cs.AI | (2406.06017v1)

Abstract: Accurate segmentation of the stroke lesions using magnetic resonance imaging (MRI) is associated with difficulties due to the complicated anatomy of the brain and the different properties of the lesions. This study introduces the Neuro-TransUNet framework, which synergizes the U-Net's spatial feature extraction with SwinUNETR's global contextual processing ability, further enhanced by advanced feature fusion and segmentation synthesis techniques. The comprehensive data pre-processing pipeline improves the framework's efficiency, which involves resampling, bias correction, and data standardization, enhancing data quality and consistency. Ablation studies confirm the significant impact of the advanced integration of U-Net with SwinUNETR and data pre-processing pipelines on performance and demonstrate the model's effectiveness. The proposed Neuro-TransUNet model, trained with the ATLAS v2.0 \emph{training} dataset, outperforms existing deep learning algorithms and establishes a new benchmark in stroke lesion segmentation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.