Papers
Topics
Authors
Recent
Search
2000 character limit reached

Emo-bias: A Large Scale Evaluation of Social Bias on Speech Emotion Recognition

Published 7 Jun 2024 in eess.AS | (2406.05065v2)

Abstract: The rapid growth of Speech Emotion Recognition (SER) has diverse global applications, from improving human-computer interactions to aiding mental health diagnostics. However, SER models might contain social bias toward gender, leading to unfair outcomes. This study analyzes gender bias in SER models trained with Self-Supervised Learning (SSL) at scale, exploring factors influencing it. SSL-based SER models are chosen for their cutting-edge performance. Our research pioneering research gender bias in SER from both upstream model and data perspectives. Our findings reveal that females exhibit slightly higher overall SER performance than males. Modified CPC and XLS-R, two well-known SSL models, notably exhibit significant bias. Moreover, models trained with Mandarin datasets display a pronounced bias toward valence. Lastly, we find that gender-wise emotion distribution differences in training data significantly affect gender bias, while upstream model representation has a limited impact.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.