Papers
Topics
Authors
Recent
2000 character limit reached

Speaker-Smoothed kNN Speaker Adaptation for End-to-End ASR

Published 7 Jun 2024 in cs.SD and eess.AS | (2406.04791v3)

Abstract: Despite recent improvements in End-to-End Automatic Speech Recognition (E2E ASR) systems, the performance can degrade due to vocal characteristic mismatches between training and testing data, particularly with limited target speaker adaptation data. We propose a novel speaker adaptation approach Speaker-Smoothed kNN that leverages k-Nearest Neighbors (kNN) retrieval techniques to improve model output by finding correctly pronounced tokens from its pre-built datastore during the decoding phase. Moreover, we utilize x-vector to dynamically adjust kNN interpolation parameters for data sparsity issue. This approach was validated using KeSpeech and MagicData corpora under in-domain and all-domain settings. Our method consistently performs comparably to fine-tuning without the associated performance degradation during speaker changes. Furthermore, in the all-domain setting, our method achieves state-of-the-art results, reducing the CER in both single speaker and multi-speaker test scenarios.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.