Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced preprocessed multi-step splitting iterations for computing PageRank (2406.04749v1)

Published 7 Jun 2024 in math.NA and cs.NA

Abstract: In recent years, the PageRank algorithm has garnered significant attention due to its crucial role in search engine technologies and its applications across various scientific fields. It is well-known that the power method is a classical method for computing PageRank. However, there is a pressing demand for alternative approaches that can address its limitations and enhance its efficiency. Specifically, the power method converges very slowly when the damping factor is close to 1. To address this challenge, this paper introduces a new multi-step splitting iteration approach for accelerating PageRank computations. Furthermore, we present two new approaches for computating PageRank, which are modifications of the new multi-step splitting iteration approach, specifically utilizing the thick restarted Arnoldi and generalized Arnoldi methods. We provide detailed discussions on the construction and theoretical convergence results of these two approaches. Extensive experiments using large test matrices demonstrate the significant performance improvements achieved by our proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com