Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Codec-based Adversarial Sample Detection for Speaker Verification (2406.04582v1)

Published 7 Jun 2024 in eess.AS and cs.SD

Abstract: Automatic Speaker Verification (ASV), increasingly used in security-critical applications, faces vulnerabilities from rising adversarial attacks, with few effective defenses available. In this paper, we propose a neural codec-based adversarial sample detection method for ASV. The approach leverages the codec's ability to discard redundant perturbations and retain essential information. Specifically, we distinguish between genuine and adversarial samples by comparing ASV score differences between original and re-synthesized audio (by codec models). This comprehensive study explores all open-source neural codecs and their variant models for experiments. The Descript-audio-codec model stands out by delivering the highest detection rate among 15 neural codecs and surpassing seven prior state-of-the-art (SOTA) detection methods. Note that, our single-model method even outperforms a SOTA ensemble method by a large margin.

Citations (2)

Summary

We haven't generated a summary for this paper yet.