Neural Codec-based Adversarial Sample Detection for Speaker Verification
Abstract: Automatic Speaker Verification (ASV), increasingly used in security-critical applications, faces vulnerabilities from rising adversarial attacks, with few effective defenses available. In this paper, we propose a neural codec-based adversarial sample detection method for ASV. The approach leverages the codec's ability to discard redundant perturbations and retain essential information. Specifically, we distinguish between genuine and adversarial samples by comparing ASV score differences between original and re-synthesized audio (by codec models). This comprehensive study explores all open-source neural codecs and their variant models for experiments. The Descript-audio-codec model stands out by delivering the highest detection rate among 15 neural codecs and surpassing seven prior state-of-the-art (SOTA) detection methods. Note that, our single-model method even outperforms a SOTA ensemble method by a large margin.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.