Papers
Topics
Authors
Recent
2000 character limit reached

LipGER: Visually-Conditioned Generative Error Correction for Robust Automatic Speech Recognition

Published 6 Jun 2024 in eess.AS, cs.AI, and cs.CL | (2406.04432v1)

Abstract: Visual cues, like lip motion, have been shown to improve the performance of Automatic Speech Recognition (ASR) systems in noisy environments. We propose LipGER (Lip Motion aided Generative Error Correction), a novel framework for leveraging visual cues for noise-robust ASR. Instead of learning the cross-modal correlation between the audio and visual modalities, we make an LLM learn the task of visually-conditioned (generative) ASR error correction. Specifically, we instruct an LLM to predict the transcription from the N-best hypotheses generated using ASR beam-search. This is further conditioned on lip motions. This approach addresses key challenges in traditional AVSR learning, such as the lack of large-scale paired datasets and difficulties in adapting to new domains. We experiment on 4 datasets in various settings and show that LipGER improves the Word Error Rate in the range of 1.1%-49.2%. We also release LipHyp, a large-scale dataset with hypothesis-transcription pairs that is additionally equipped with lip motion cues to promote further research in this space

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.