Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Post-hoc Part-prototype Networks (2406.03421v1)

Published 5 Jun 2024 in cs.CV

Abstract: Post-hoc explainability methods such as Grad-CAM are popular because they do not influence the performance of a trained model. However, they mainly reveal "where" a model looks at for a given input, fail to explain "what" the model looks for (e.g., what is important to classify a bird image to a Scott Oriole?). Existing part-prototype networks leverage part-prototypes (e.g., characteristic Scott Oriole's wing and head) to answer both "where" and "what", but often under-perform their black box counterparts in the accuracy. Therefore, a natural question is: can one construct a network that answers both "where" and "what" in a post-hoc manner to guarantee the model's performance? To this end, we propose the first post-hoc part-prototype network via decomposing the classification head of a trained model into a set of interpretable part-prototypes. Concretely, we propose an unsupervised prototype discovery and refining strategy to obtain prototypes that can precisely reconstruct the classification head, yet being interpretable. Besides guaranteeing the performance, we show that our network offers more faithful explanations qualitatively and yields even better part-prototypes quantitatively than prior part-prototype networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.