Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-to-Image Rectified Flow as Plug-and-Play Priors (2406.03293v3)

Published 5 Jun 2024 in cs.CV

Abstract: Large-scale diffusion models have achieved remarkable performance in generative tasks. Beyond their initial training applications, these models have proven their ability to function as versatile plug-and-play priors. For instance, 2D diffusion models can serve as loss functions to optimize 3D implicit models. Rectified flow, a novel class of generative models, enforces a linear progression from the source to the target distribution and has demonstrated superior performance across various domains. Compared to diffusion-based methods, rectified flow approaches surpass in terms of generation quality and efficiency, requiring fewer inference steps. In this work, we present theoretical and experimental evidence demonstrating that rectified flow based methods offer similar functionalities to diffusion models - they can also serve as effective priors. Besides the generative capabilities of diffusion priors, motivated by the unique time-symmetry properties of rectified flow models, a variant of our method can additionally perform image inversion. Experimentally, our rectified flow-based priors outperform their diffusion counterparts - the SDS and VSD losses - in text-to-3D generation. Our method also displays competitive performance in image inversion and editing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaofeng Yang (154 papers)
  2. Cheng Chen (263 papers)
  3. Xulei Yang (42 papers)
  4. Fayao Liu (47 papers)
  5. Guosheng Lin (158 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.