Exploiting LMM-based knowledge for image classification tasks
Abstract: In this paper we address image classification tasks leveraging knowledge encoded in Large Multimodal Models (LMMs). More specifically, we use the MiniGPT-4 model to extract semantic descriptions for the images, in a multimodal prompting fashion. In the current literature, vision LLMs such as CLIP, among other approaches, are utilized as feature extractors, using only the image encoder, for solving image classification tasks. In this paper, we propose to additionally use the text encoder to obtain the text embeddings corresponding to the MiniGPT-4-generated semantic descriptions. Thus, we use both the image and text embeddings for solving the image classification task. The experimental evaluation on three datasets validates the improved classification performance achieved by exploiting LMM-based knowledge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.