Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploiting LMM-based knowledge for image classification tasks

Published 5 Jun 2024 in cs.CV, cs.AI, and cs.MM | (2406.03071v1)

Abstract: In this paper we address image classification tasks leveraging knowledge encoded in Large Multimodal Models (LMMs). More specifically, we use the MiniGPT-4 model to extract semantic descriptions for the images, in a multimodal prompting fashion. In the current literature, vision LLMs such as CLIP, among other approaches, are utilized as feature extractors, using only the image encoder, for solving image classification tasks. In this paper, we propose to additionally use the text encoder to obtain the text embeddings corresponding to the MiniGPT-4-generated semantic descriptions. Thus, we use both the image and text embeddings for solving the image classification task. The experimental evaluation on three datasets validates the improved classification performance achieved by exploiting LMM-based knowledge.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.