Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Open-Source Tool for Mapping War Destruction at Scale in Ukraine using Sentinel-1 Time Series

Published 4 Jun 2024 in cs.CV | (2406.02506v3)

Abstract: Access to detailed war impact assessments is crucial for humanitarian organizations to assist affected populations effectively. However, maintaining a comprehensive understanding of the situation on the ground is challenging, especially in widespread and prolonged conflicts. Here we present a scalable method for estimating building damage resulting from armed conflicts. By training a machine learning model on Synthetic Aperture Radar image time series, we generate probabilistic damage estimates at the building level, leveraging existing damage assessments and open building footprints. To allow large-scale inference and ensure accessibility, we tie our method to run on Google Earth Engine. Users can adjust confidence intervals to suit their needs, enabling rapid and flexible assessments of war-related damage across large areas. We provide two publicly accessible dashboards: a Ukraine Damage Explorer to dynamically view our precomputed estimates, and a Rapid Damage Mapping Tool to run our method and generate custom maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 23 likes about this paper.