Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tomographic Reconstruction and Regularisation with Search Space Expansion and Total Variation

Published 3 Jun 2024 in cs.NE and cs.CV | (2406.01469v1)

Abstract: The use of ray projections to reconstruct images is a common technique in medical imaging. Dealing with incomplete data is particularly important when a patient is vulnerable to potentially damaging radiation or is unable to cope with the long scanning time. This paper utilises the reformulation of the problem into an optimisation tasks, followed by using a swarm-based reconstruction from highly undersampled data where particles move in image space in an attempt to minimise the reconstruction error. The process is prone to noise and, in addition to the recently introduced search space expansion technique, a further smoothing process, total variation regularisation, is adapted and investigated. The proposed method is shown to produce lower reproduction errors compared to standard tomographic reconstruction toolbox algorithms as well as one of the leading high-dimensional optimisers on the clinically important Shepp-Logan phantom.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.