Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blockchain-aided wireless federated learning: Resource allocation and client scheduling (2406.00752v1)

Published 2 Jun 2024 in cs.DC

Abstract: Federated learning (FL) based on the centralized design faces both challenges regarding the trust issue and a single point of failure. To alleviate these issues, blockchain-aided decentralized FL (BDFL) introduces the decentralized network architecture into the FL training process, which can effectively overcome the defects of centralized architecture. However, deploying BDFL in wireless networks usually encounters challenges such as limited bandwidth, computing power, and energy consumption. Driven by these considerations, a dynamic stochastic optimization problem is formulated to minimize the average training delay by jointly optimizing the resource allocation and client selection under the constraints of limited energy budget and client participation. We solve the long-term mixed integer non-linear programming problem by employing the tool of Lyapunov optimization and thereby propose the dynamic resource allocation and client scheduling BDFL (DRC-BDFL) algorithm. Furthermore, we analyze the learning performance of DRC-BDFL and derive an upper bound for convergence regarding the global loss function. Extensive experiments conducted on SVHN and CIFAR-10 datasets demonstrate that DRC-BDFL achieves comparable accuracy to baseline algorithms while significantly reducing the training delay by 9.24% and 12.47%, respectively.

Summary

We haven't generated a summary for this paper yet.