Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Throughput and Link Utilization Improvement in Satellite Networks: A Learning-Enabled Approach (2406.00723v1)

Published 2 Jun 2024 in cs.NI, cs.SY, and eess.SY

Abstract: Satellite networks provide communication services to global users with an uneven geographical distribution. In densely populated regions, Inter-satellite links (ISLs) often experience congestion, blocking traffic from other links and leading to low link utilization and throughput. In such cases, delay-tolerant traffic can be withheld by moving satellites and carried to navigate congested areas, thereby mitigating link congestion in densely populated regions. Through rational store-and-forward decision-making, link utilization and throughput can be improved. Building on this foundation, this letter centers its focus on learning-based decision-making for satellite traffic. First, a link load prediction method based on topology isomorphism is proposed. Then, a Markov decision process (MDP) is formulated to model store-and-forward decision-making. To generate store-and-forward policies, we propose reinforcement learning algorithms based on value iteration and Q-Learning. Simulation results demonstrate that the proposed method improves throughput and link utilization while consuming less than 20$\%$ of the time required by constraint-based routing.

Summary

We haven't generated a summary for this paper yet.