Papers
Topics
Authors
Recent
2000 character limit reached

Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models

Published 2 Jun 2024 in cs.CL, cs.CR, cs.CY, and cs.LG | (2406.00628v1)

Abstract: LLMs have revolutionized how we interact with machines. However, this technological advancement has been paralleled by the emergence of "Mallas," malicious services operating underground that exploit LLMs for nefarious purposes. Such services create malware, phishing attacks, and deceptive websites, escalating the cyber security threats landscape. This paper delves into the proliferation of Mallas by examining the use of various pre-trained LLMs and their efficiency and vulnerabilities when misused. Building on a dataset from the Common Vulnerabilities and Exposures (CVE) program, it explores fine-tuning methodologies to generate code and explanatory text related to identified vulnerabilities. This research aims to shed light on the operational strategies and exploitation techniques of Mallas, leading to the development of more secure and trustworthy AI applications. The paper concludes by emphasizing the need for further research, enhanced safeguards, and ethical guidelines to mitigate the risks associated with the malicious application of LLMs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.