Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharpness-Aware Minimization Enhances Feature Quality via Balanced Learning (2405.20439v1)

Published 30 May 2024 in cs.LG

Abstract: Sharpness-Aware Minimization (SAM) has emerged as a promising alternative optimizer to stochastic gradient descent (SGD). The originally-proposed motivation behind SAM was to bias neural networks towards flatter minima that are believed to generalize better. However, recent studies have shown conflicting evidence on the relationship between flatness and generalization, suggesting that flatness does fully explain SAM's success. Sidestepping this debate, we identify an orthogonal effect of SAM that is beneficial out-of-distribution: we argue that SAM implicitly balances the quality of diverse features. SAM achieves this effect by adaptively suppressing well-learned features which gives remaining features opportunity to be learned. We show that this mechanism is beneficial in datasets that contain redundant or spurious features where SGD falls for the simplicity bias and would not otherwise learn all available features. Our insights are supported by experiments on real data: we demonstrate that SAM improves the quality of features in datasets containing redundant or spurious features, including CelebA, Waterbirds, CIFAR-MNIST, and DomainBed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.