Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The bounded cohomology of transformation groups of Euclidean spaces and discs (2405.20395v2)

Published 30 May 2024 in math.GT, math.AT, and math.GR

Abstract: We prove that the groups of orientation-preserving homeomorphisms and diffeomorphisms of $\mathbb{R}n$ are boundedly acyclic, in all regularities. This is the first full computation of the bounded cohomology of a transformation group that is not compactly supported, and it implies that many characteristic classes of flat $\mathbb{R}n$- and $Sn$-bundles are unbounded. We obtain the same result for the group of homeomorphisms of the disc that restrict to the identity on the boundary, and for the homeomorphism group of the non-compact Cantor set. In the appendix, Alexander Kupers proves a controlled version of the annulus theorem which we use to study the bounded cohomology of the homeomorphism group of the discs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.