Papers
Topics
Authors
Recent
2000 character limit reached

Randomized Exploration for Reinforcement Learning with Multinomial Logistic Function Approximation

Published 30 May 2024 in stat.ML and cs.LG | (2405.20165v2)

Abstract: We study reinforcement learning with multinomial logistic (MNL) function approximation where the underlying transition probability kernel of the Markov decision processes (MDPs) is parametrized by an unknown transition core with features of state and action. For the finite horizon episodic setting with inhomogeneous state transitions, we propose provably efficient algorithms with randomized exploration having frequentist regret guarantees. For our first algorithm, $\texttt{RRL-MNL}$, we adapt optimistic sampling to ensure the optimism of the estimated value function with sufficient frequency. We establish that $\texttt{RRL-MNL}$ achieves a $\tilde{O}(\kappa{-1} d{\frac{3}{2}} H{\frac{3}{2}} \sqrt{T})$ frequentist regret bound with constant-time computational cost per episode. Here, $d$ is the dimension of the transition core, $H$ is the horizon length, $T$ is the total number of steps, and $\kappa$ is a problem-dependent constant. Despite the simplicity and practicality of $\texttt{RRL-MNL}$, its regret bound scales with $\kappa{-1}$, which is potentially large in the worst case. To improve the dependence on $\kappa{-1}$, we propose $\texttt{ORRL-MNL}$, which estimates the value function using the local gradient information of the MNL transition model. We show that its frequentist regret bound is $\tilde{O}(d{\frac{3}{2}} H{\frac{3}{2}} \sqrt{T} + \kappa{-1} d2 H2)$. To the best of our knowledge, these are the first randomized RL algorithms for the MNL transition model that achieve statistical guarantees with constant-time computational cost per episode. Numerical experiments demonstrate the superior performance of the proposed algorithms.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 9 likes about this paper.