Papers
Topics
Authors
Recent
2000 character limit reached

Josephson junctions based on ultraclean carbon nanotubes

Published 29 May 2024 in cond-mat.mes-hall and physics.app-ph | (2405.19192v2)

Abstract: We present a technique for integrating ultraclean carbon nanotubes into superconducting circuits, aiming to realize Josephson junctions based on one-dimensional elementary quantum conductors. This technique primarily involves depositing the nanotube in the final step, thus preserving it from the inherent contaminations of nanofabrication and maintaining contact solely with superconducting electrodes and a crystalline hBN substrate. Through transport measurements performed in both the normal and superconducting states, we demonstrate that our method yields high-quality junctions with Josephson energies suitable for quantum device applications, such as carbon nanotube-based superconducting qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum transport in carbon nanotubes,” Reviews of Modern Physics, vol. 87, pp. 703–764, July 2015. Publisher: American Physical Society.
  2. A. Baydin, F. Tay, J. Fan, M. Manjappa, W. Gao, and J. Kono, “Carbon Nanotube Devices for Quantum Technology,” Materials, vol. 15, p. 1535, Feb. 2022.
  3. E. A. Laird, F. Pei, and L. P. Kouwenhoven, “A valley–spin qubit in a carbon nanotube,” Nature Nanotechnology, vol. 8, pp. 565–568, Aug. 2013. Publisher: Nature Publishing Group.
  4. T. Pei, A. Pályi, M. Mergenthaler, N. Ares, A. Mavalankar, J. H. Warner, G. A. D. Briggs, and E. A. Laird, “Hyperfine and Spin-Orbit Coupling Effects on Decay of Spin-Valley States in a Carbon Nanotube,” Physical Review Letters, vol. 118, p. 177701, Apr. 2017. Publisher: American Physical Society.
  5. Z. V. Penfold-Fitch, F. Sfigakis, and M. R. Buitelaar, “Microwave Spectroscopy of a Carbon Nanotube Charge Qubit,” Physical Review Applied, vol. 7, p. 054017, May 2017. Publisher: American Physical Society.
  6. I. Khivrich and S. Ilani, “Atomic-like charge qubit in a carbon nanotube enabling electric and magnetic field nano-sensing,” Nature Communications, vol. 11, p. 2299, May 2020. Publisher: Nature Publishing Group.
  7. A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, and M. Burghard, “Supercurrents Through Single-Walled Carbon Nanotubes,” Science, vol. 284, pp. 1508–1511, May 1999. Publisher: American Association for the Advancement of Science.
  8. J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and M. Monthioux, “Carbon nanotube superconducting quantum interference device,” Nature Nanotechnology, vol. 1, pp. 53–59, Oct. 2006. Publisher: Nature Publishing Group.
  9. P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven, “Quantum supercurrent transistors in carbon nanotubes,” Nature, vol. 439, pp. 953–956, Feb. 2006. Publisher: Nature Publishing Group.
  10. E. Pallecchi, M. Gaaß, D. A. Ryndyk, and C. Strunk, “Carbon nanotube Josephson junctions with Nb contacts,” Applied Physics Letters, vol. 93, p. 072501, Aug. 2008.
  11. G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi, S. R. Plissard, E. P. A. M. Bakkers, A. R. Akhmerov, and L. DiCarlo, “Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements,” Physical Review Letters, vol. 115, p. 127002, Sept. 2015. Publisher: American Physical Society.
  12. T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, J. Nygård, and C. M. Marcus, “Semiconductor-Nanowire-Based Superconducting Qubit,” Physical Review Letters, vol. 115, p. 127001, Sept. 2015. Publisher: American Physical Society.
  13. L. Casparis, M. R. Connolly, M. Kjaergaard, N. J. Pearson, A. Kringhøj, T. W. Larsen, F. Kuemmeth, T. Wang, C. Thomas, S. Gronin, G. C. Gardner, M. J. Manfra, C. M. Marcus, and K. D. Petersson, “Superconducting gatemon qubit based on a proximitized two-dimensional electron gas,” Nature Nanotechnology, vol. 13, pp. 915–919, Oct. 2018. Number: 10 Publisher: Nature Publishing Group.
  14. A. Kringhøj, T. W. Larsen, O. Erlandsson, W. Uilhoorn, J. Kroll, M. Hesselberg, R. McNeil, P. Krogstrup, L. Casparis, C. Marcus, and K. Petersson, “Magnetic-Field-Compatible Superconducting Transmon Qubit,” Physical Review Applied, vol. 15, p. 054001, May 2021. Publisher: American Physical Society.
  15. J. I.-J. Wang, D. Rodan-Legrain, L. Bretheau, D. L. Campbell, B. Kannan, D. Kim, M. Kjaergaard, P. Krantz, G. O. Samach, F. Yan, J. L. Yoder, K. Watanabe, T. Taniguchi, T. P. Orlando, S. Gustavsson, P. Jarillo-Herrero, and W. D. Oliver, “Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures,” Nature Nanotechnology, vol. 14, pp. 120–125, Feb. 2019. Number: 2 Publisher: Nature Publishing Group.
  16. C. Janvier, L. Tosi, L. Bretheau, Ç. Ö. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier, and C. Urbina, “Coherent manipulation of Andreev states in superconducting atomic contacts,” Science, vol. 349, pp. 1199–1202, Sept. 2015. Publisher: American Association for the Advancement of Science.
  17. M. Hays, V. Fatemi, D. Bouman, J. Cerrillo, S. Diamond, K. Serniak, T. Connolly, P. Krogstrup, J. Nygård, A. Levy Yeyati, A. Geresdi, and M. H. Devoret, “Coherent manipulation of an Andreev spin qubit,” Science, vol. 373, pp. 430–433, July 2021. Publisher: American Association for the Advancement of Science.
  18. M. Pita-Vidal, A. Bargerbos, R. Žitko, L. J. Splitthoff, L. Grünhaupt, J. J. Wesdorp, Y. Liu, L. P. Kouwenhoven, R. Aguado, B. van Heck, A. Kou, and C. K. Andersen, “Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit,” Nature Physics, vol. 19, pp. 1110–1115, Aug. 2023. Publisher: Nature Publishing Group.
  19. M. Mergenthaler, A. Nersisyan, A. Patterson, M. Esposito, A. Baumgartner, C. Schönenberger, G. A. D. Briggs, E. A. Laird, and P. J. Leek, “Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits,” Physical Review Applied, vol. 15, p. 064050, June 2021. Publisher: American Physical Society.
  20. J. Cao, Q. Wang, and H. Dai, “Electron transport in very clean, as-grown suspended carbon nanotubes,” Nature Materials, vol. 4, pp. 745–749, Oct. 2005. Number: 10 Publisher: Nature Publishing Group.
  21. V. V. Deshpande and M. Bockrath, “The one-dimensional Wigner crystal in carbon nanotubes,” Nature Physics, vol. 4, pp. 314–318, Apr. 2008. Publisher: Nature Publishing Group.
  22. V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, “Mott Insulating State in Ultraclean Carbon Nanotubes,” Science, vol. 323, pp. 106–110, Jan. 2009. Publisher: American Association for the Advancement of Science.
  23. C. C. Wu, C. H. Liu, and Z. Zhong, “One-Step Direct Transfer of Pristine Single-Walled Carbon Nanotubes for Functional Nanoelectronics,” Nano Letters, vol. 10, pp. 1032–1036, Mar. 2010. Publisher: American Chemical Society.
  24. J. Waissman, M. Honig, S. Pecker, A. Benyamini, A. Hamo, and S. Ilani, “Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes,” Nature Nanotechnology, vol. 8, pp. 569–574, Aug. 2013. Number: 8 Publisher: Nature Publishing Group.
  25. M. Jung, J. Schindele, S. Nau, M. Weiss, A. Baumgartner, and C. Schönenberger, “Ultraclean Single, Double, and Triple Carbon Nanotube Quantum Dots with Recessed Re Bottom Gates,” Nano Letters, vol. 13, pp. 4522–4526, Sept. 2013. Publisher: American Chemical Society.
  26. J.-W. Huang, C. Pan, S. Tran, B. Cheng, K. Watanabe, T. Taniguchi, C. N. Lau, and M. Bockrath, “Superior Current Carrying Capacity of Boron Nitride Encapsulated Carbon Nanotubes with Zero-Dimensional Contacts,” Nano Letters, vol. 15, pp. 6836–6840, Oct. 2015. Publisher: American Chemical Society.
  27. A. Cheng, T. Taniguchi, K. Watanabe, P. Kim, and J.-D. Pillet, “Guiding Dirac Fermions in Graphene with a Carbon Nanotube,” Physical Review Letters, vol. 123, p. 216804, Nov. 2019. Publisher: American Physical Society.
  28. T. Cubaynes, L. C. Contamin, M. C. Dartiailh, M. M. Desjardins, A. Cottet, M. R. Delbecq, and T. Kontos, “Nanoassembly technique of carbon nanotubes for hybrid circuit-QED,” Applied Physics Letters, vol. 117, p. 114001, Sept. 2020.
  29. N. Lotfizadeh, M. J. Senger, D. R. McCulley, E. D. Minot, and V. V. Deshpande, “Quantum Interferences in Ultraclean Carbon Nanotubes,” Physical Review Letters, vol. 126, p. 216802, May 2021. Publisher: American Physical Society.
  30. T. Althuon, T. Cubaynes, A. Auer, C. Sürgers, and W. Wernsdorfer, “Nano-assembled open quantum dot nanotube devices,” Communications Materials, vol. 5, pp. 1–7, Jan. 2024. Publisher: Nature Publishing Group.
  31. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, pp. 722–726, Oct. 2010. Publisher: Nature Publishing Group.
  32. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-Dimensional Electrical Contact to a Two-Dimensional Material,” Science, vol. 342, pp. 614–617, Nov. 2013. Publisher: American Association for the Advancement of Science.
  33. J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, vol. 292, pp. 567–574, Aug. 1998.
  34. S. Huang, X. Cai, and J. Liu, “Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates,” Journal of the American Chemical Society, vol. 125, pp. 5636–5637, May 2003. Publisher: American Chemical Society.
  35. M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering,” Science, vol. 306, pp. 1540–1543, Nov. 2004.
  36. X. M. H. Huang, R. Caldwell, L. Huang, S. C. Jun, M. Huang, M. Y. Sfeir, S. P. O’Brien, and J. Hone, “Controlled Placement of Individual Carbon Nanotubes,” Nano Letters, vol. 5, pp. 1515–1518, July 2005.
  37. M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure,” Science, vol. 312, pp. 554–556, Apr. 2006.
  38. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. v. d. Zant, and G. A. Steele, “Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping,” 2D Materials, vol. 1, p. 011002, Apr. 2014. Publisher: IOP Publishing.
  39. J.-D. Pillet, V. Benzoni, J. Griesmar, J.-L. Smirr, and Ç. Ö. Girit, “Nonlocal Josephson Effect in Andreev Molecules,” Nano Letters, vol. 19, pp. 7138–7143, Oct. 2019. Publisher: American Chemical Society.
  40. V. Kornich, H. S. Barakov, and Y. V. Nazarov, “Fine energy splitting of overlapping Andreev bound states in multiterminal superconducting nanostructures,” Physical Review Research, vol. 1, p. 033004, Oct. 2019. Publisher: American Physical Society.
  41. J.-D. Pillet, V. Benzoni, J. Griesmar, J.-L. Smirr, and Ç. Girit, “Scattering description of Andreev molecules,” SciPost Physics Core, vol. 2, p. 009, June 2020.
  42. S. Matsuo, J. S. Lee, C.-Y. Chang, Y. Sato, K. Ueda, C. J. Palmstrøm, and S. Tarucha, “Observation of nonlocal Josephson effect on double InAs nanowires,” Communications Physics, vol. 5, pp. 1–6, Sept. 2022. Number: 1 Publisher: Nature Publishing Group.
  43. D. Z. Haxell, M. Coraiola, M. Hinderling, S. C. ten Kate, D. Sabonis, A. E. Svetogorov, W. Belzig, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, and F. Nichele, “Demonstration of the Nonlocal Josephson Effect in Andreev Molecules,” Nano Letters, vol. 23, pp. 7532–7538, Aug. 2023. Publisher: American Chemical Society.
  44. J.-D. Pillet, S. Annabi, A. Peugeot, H. Riechert, E. Arrighi, J. Griesmar, and L. Bretheau, “Josephson Diode Effect in Andreev Molecules,” June 2023. arXiv:2306.12273 [cond-mat].
  45. A. Keliri and B. Douçot, “Driven Andreev molecule,” Physical Review B, vol. 107, p. 094505, Mar. 2023. Publisher: American Physical Society.
  46. L. C. Contamin, L. Jarjat, W. Legrand, A. Cottet, T. Kontos, and M. R. Delbecq, “Zero energy states clustering in an elemental nanowire coupled to a superconductor,” Nature Communications, vol. 13, p. 6188, Oct. 2022. Number: 1 Publisher: Nature Publishing Group.
  47. E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, “Determination of electron orbital magnetic moments in carbon nanotubes,” Nature, vol. 428, pp. 536–539, Apr. 2004. Publisher: Nature Publishing Group.
  48. W. Liang, M. Bockrath, and H. Park, “Shell Filling and Exchange Coupling in Metallic Single-Walled Carbon Nanotubes,” Physical Review Letters, vol. 88, p. 126801, Mar. 2002. Publisher: American Physical Society.
  49. A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, “SU(2) and SU(4) Kondo effects in carbon nanotube quantum dots,” Physical Review B, vol. 75, p. 241407, June 2007. Publisher: American Physical Society.
  50. F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, “Coupling of spin and orbital motion of electrons in carbon nanotubes,” Nature, vol. 452, pp. 448–452, Mar. 2008. Publisher: Nature Publishing Group.
  51. K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske, T. S. Jespersen, J. Nygård, K. Flensberg, and P. E. Lindelof, “Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots,” Physical Review B, vol. 79, p. 134518, Apr. 2009. Publisher: American Physical Society.
  52. T. S. Jespersen, K. Grove-Rasmussen, J. Paaske, K. Muraki, T. Fujisawa, J. Nygård, and K. Flensberg, “Gate-dependent spin–orbit coupling in multielectron carbon nanotubes,” Nature Physics, vol. 7, pp. 348–353, Apr. 2011. Publisher: Nature Publishing Group.
  53. J. P. Cleuziou, N. V. N’Guyen, S. Florens, and W. Wernsdorfer, “Interplay of the Kondo Effect and Strong Spin-Orbit Coupling in Multihole Ultraclean Carbon Nanotubes,” Physical Review Letters, vol. 111, p. 136803, Sept. 2013. Publisher: American Physical Society.
  54. R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat, and R. Deblock, “0-pi quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy,” Physical Review B, vol. 93, p. 195437, May 2016. Publisher: American Physical Society.
  55. M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, “Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes,” Science, vol. 292, pp. 702–705, Apr. 2001. Publisher: American Association for the Advancement of Science.
  56. M. J. Senger, D. R. McCulley, N. Lotfizadeh, V. V. Deshpande, and E. D. Minot, “Universal interaction-driven gap in metallic carbon nanotubes,” Physical Review B, vol. 97, p. 035445, Jan. 2018. Publisher: American Physical Society.
  57. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, “Fabry - Perot interference in a nanotube electron waveguide,” Nature, vol. 411, pp. 665–669, June 2001. Number: 6838 Publisher: Nature Publishing Group.
  58. L. G. Herrmann, T. Delattre, P. Morfin, J.-M. Berroir, B. Plaçais, D. C. Glattli, and T. Kontos, “Shot Noise in Fabry-Pérot Interferometers Based on Carbon Nanotubes,” Physical Review Letters, vol. 99, p. 156804, Oct. 2007. Publisher: American Physical Society.
  59. W. Yang, C. Urgell, S. L. De Bonis, M. Margańska, M. Grifoni, and A. Bachtold, “Fabry-Pérot Oscillations in Correlated Carbon Nanotubes,” Physical Review Letters, vol. 125, p. 187701, Oct. 2020. Publisher: American Physical Society.
  60. J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati, and P. Joyez, “Andreev bound states in supercurrent-carrying carbon nanotubes revealed,” Nat. Phys., vol. 6, no. 12, pp. 965–969, 2010. Publisher: Nature Publishing Group.
  61. J.-D. Pillet, Tunneling spectroscopy of the Andreev Bound States in a Carbone Nanotube. phdthesis, Université Pierre et Marie Curie - Paris VI, Dec. 2011.
  62. J.-D. Pillet, P. Joyez, R. Žitko, and M. F. Goffman, “Tunneling spectroscopy of a single quantum dot coupled to a superconductor: From Kondo ridge to Andreev bound states,” Phys. Rev. B, vol. 88, p. 045101, July 2013.
  63. D. Vion, M. Götz, P. Joyez, D. Esteve, and M. H. Devoret, “Thermal Activation above a Dissipation Barrier: Switching of a Small Josephson Junction,” Physical Review Letters, vol. 77, pp. 3435–3438, Oct. 1996. Publisher: American Physical Society.
  64. H. I. Jørgensen, T. Novotný, K. Grove-Rasmussen, K. Flensberg, and P. E. Lindelof, “Critical Current 0-π𝜋\piitalic_π Transition in Designed Josephson Quantum Dot Junctions,” Nano Letters, vol. 7, pp. 2441–2445, Aug. 2007. Publisher: American Chemical Society.
  65. A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C. Schönenberger, and H. Bouchiat, “Tuning the Josephson current in carbon nanotubes with the Kondo effect,” Physical Review B, vol. 79, p. 161407, Apr. 2009. Publisher: American Physical Society.
  66. C. Feuillet-Palma, T. Delattre, P. Morfin, J.-M. Berroir, G. Fève, D. C. Glattli, B. Plaçais, A. Cottet, and T. Kontos, “Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts,” Physical Review B, vol. 81, p. 115414, Mar. 2010. Publisher: American Physical Society.
  67. L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, and C. Strunk, “Carbon Nanotubes as Cooper-Pair Beam Splitters,” Physical Review Letters, vol. 104, p. 026801, Jan. 2010.
  68. M. M. Desjardins, L. C. Contamin, M. R. Delbecq, M. C. Dartiailh, L. E. Bruhat, T. Cubaynes, J. J. Viennot, F. Mallet, S. Rohart, A. Thiaville, A. Cottet, and T. Kontos, “Synthetic spin–orbit interaction for Majorana devices,” Nature Materials, vol. 18, pp. 1060–1064, Oct. 2019. Publisher: Nature Publishing Group.
  69. A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A. Baumgartner, “Spin cross-correlation experiments in an electron entangler,” Nature, vol. 612, pp. 454–458, Dec. 2022. Publisher: Nature Publishing Group.
  70. G. Wang, T. Dvir, G. P. Mazur, C.-X. Liu, N. van Loo, S. L. D. ten Haaf, A. Bordin, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, M. Wimmer, and L. P. Kouwenhoven, “Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires,” Nature, vol. 612, pp. 448–453, Dec. 2022. Publisher: Nature Publishing Group.
  71. M. Masseroni, M. Gull, A. Panigrahi, N. Jacobsen, F. Fischer, C. Tong, J. D. Gerber, M. Niese, T. Taniguchi, K. Watanabe, L. Levitov, T. Ihn, K. Ensslin, and H. Duprez, “Spin-orbit proximity in MoS2/bilayer graphene heterostructures,” Mar. 2024. arXiv:2403.17120 [cond-mat].
  72. T. Dvir, G. Wang, N. van Loo, C.-X. Liu, G. P. Mazur, A. Bordin, S. L. D. ten Haaf, J.-Y. Wang, D. van Driel, F. Zatelli, X. Li, F. K. Malinowski, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, M. Wimmer, and L. P. Kouwenhoven, “Realization of a minimal Kitaev chain in coupled quantum dots,” Nature, vol. 614, pp. 445–450, Feb. 2023. Publisher: Nature Publishing Group.
  73. P. D. Johannsen and C. Schrade, “Fermionic Quantum Simulation on Andreev Bound State Superlattices,” Apr. 2024. arXiv:2404.12430 [cond-mat].
  74. X. Zhou, Y. Chen, J. Chen, C. Hu, B. Lyu, K. Xu, S. Lou, P. Shen, S. Ma, Z. Wu, Y. Xie, Z. Zhang, Z. Lü, W. Luo, Q. Liang, L. Xian, G. Zhang, and Z. Shi, “Pressure-induced flat bands in one-dimensional moiré superlattices of collapsed chiral carbon nanotubes,” Phys. Rev. B, vol. 109, p. 045105, Jan 2024.
  75. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, pp. 2555–2558, June 1999.
  76. K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nature Nanotechnology, vol. 7, pp. 325–329, May 2012. Publisher: Nature Publishing Group.
  77. M. Tinkham, INTRODUCTION TO SUPERCONDUCTIVITY : Second edition. Dover Books on Physics, Mineola NY: Dover publications, 2nd ed. ed., 1996.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.