Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Potential to identify neutrino mass ordering with reactor antineutrinos at JUNO (2405.18008v2)

Published 28 May 2024 in hep-ex

Abstract: The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment under construction in South China. This paper presents an updated estimate of JUNO's sensitivity to neutrino mass ordering using the reactor antineutrinos emitted from eight nuclear reactor cores in the Taishan and Yangjiang nuclear power plants. This measurement is planned by studying the fine interference pattern caused by quasi-vacuum oscillations in the oscillated antineutrino spectrum at a baseline of 52.5~km and is completely independent of the CP violating phase and neutrino mixing angle $\theta_{23}$. The sensitivity is obtained through a joint analysis of JUNO and Taishan Antineutrino Observatory (TAO) detectors utilizing the best available knowledge to date about the location and overburden of the JUNO experimental site, local and global nuclear reactors, JUNO and TAO detector responses, expected event rates and spectra of signals and backgrounds, and systematic uncertainties of analysis inputs. We find that a 3$\sigma$ median sensitivity to reject the wrong mass ordering hypothesis can be reached with an exposure to approximately 6.5 years $\times$ 26.6 GW thermal power.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. T. Kajita, Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88, 030501 (2016).
  2. A. B. McDonald, Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88, 030502 (2016).
  3. J. N. Bahcall and R. Davis, Solar Neutrinos - a Scientific Puzzle, Science 191, 264 (1976).
  4. Phys. Rev. Lett. 20, 1205 (1968).
  5. Phys. Rev. Lett. 87, 071301 (2001), arXiv:nucl-ex/0106015.
  6. Phys. Rev. Lett. 89, 011301 (2002), arXiv:nucl-ex/0204008.
  7. Phys. Rev. Lett. 90, 021802 (2003), arXiv:hep-ex/0212021.
  8. J. M. LoSecco et al., Test of Neutrino Oscillations Using Atmospheric Neutrinos, Phys. Rev. Lett. 54, 2299 (1985).
  9. Phys. Lett. B 205, 416 (1988).
  10. Phys. Rev. Lett. 69, 1010 (1992).
  11. Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003.
  12. Phys. Rev. Lett. 90, 041801 (2003), arXiv:hep-ex/0212007.
  13. PTEP 2020, 083C01 (2020).
  14. B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26, 984 (1968).
  15. Prog. Theor. Phys. 28, 870 (1962).
  16. Phys. Lett. B 94, 495 (1980).
  17. Phys. Rev. D 88, 033001 (2013), arXiv:1303.4667.
  18. Phys. Rev. C 88, 025501 (2013), arXiv:1109.0763.
  19. Phys. Rev. D 94, 052010 (2016), arXiv:1606.07538.
  20. Phys. Rev. D 106, 032004 (2022), arXiv:2108.08219.
  21. Phys. Rev. D 103, 112008 (2021), arXiv:2101.03779.
  22. PTEP 2019, 053F01 (2019), arXiv:1901.03230.
  23. Phys. Rev. D 108, 012014 (2023), arXiv:2304.12236.
  24. Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669.
  25. Phys. Rev. Lett. 130, 161802 (2023), arXiv:2211.14988.
  26. Phys. Rev. Lett. 108, 131801 (2012), arXiv:1112.6353.
  27. Nature Phys. 16, 558 (2020), arXiv:1901.09445.
  28. Phys. Rev. Lett. 108, 191802 (2012), arXiv:1204.0626.
  29. Phys. Rev. Lett. 121, 201801 (2018), arXiv:1806.00248.
  30. X. Qian and P. Vogel, Neutrino Mass Hierarchy, Prog. Part. Nucl. Phys. 83, 1 (2015), arXiv:1505.01891.
  31. Prog. Part. Nucl. Phys. 60, 338 (2008), arXiv:0710.0554.
  32. A. de Gouvea and J. Jenkins, The Physical Range of Majorana Neutrino Mixing Parameters, Phys. Rev. D 78, 053003 (2008), arXiv:0804.3627.
  33. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17, 2369 (1978).
  34. S. P. Mikheyev and A. Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42, 913 (1985).
  35. M. Wurm, Solar Neutrino Spectroscopy, Phys. Rept. 685, 1 (2017), arXiv:1704.06331.
  36. Ann. Rev. Nucl. Part. Sci. 69, 219 (2019), arXiv:1902.04097.
  37. Ann. Rev. Nucl. Part. Sci. 60, 569 (2010), arXiv:1001.2799.
  38. J. Phys. G 41, 044007 (2014).
  39. Astropart. Phys. 63, 66 (2015), arXiv:1309.5383.
  40. Phys. Rev. D 105, 072006 (2022), arXiv:2109.01304.
  41. Hyper-Kamiokande, J. Bian et al., Hyper-Kamiokande Experiment: A Snowmass White Paper, in 2022 Snowmass Summer Study, 2022, arXiv:2203.02029.
  42. (2014), arXiv:1401.2046.
  43. Eur. Phys. J. C 82, 26 (2022), arXiv:2103.09885.
  44. Chin. Phys. C 46, 123001 (2022), arXiv:2204.13249.
  45. Chin. Phys. C 40, 091001 (2016), arXiv:1605.00900.
  46. Phys. Rev. D 89, 013001 (2014), arXiv:1309.1638.
  47. J. Phys. G 43, 030401 (2016), arXiv:1507.05613.
  48. Eur. Phys. J. C 82, 329 (2022), arXiv:2204.02703.
  49. (2020), arXiv:2005.08745.
  50. Phys. Rev. D 88, 013008 (2013), arXiv:1303.6733.
  51. Phys. Rev. D 72, 013009 (2005), arXiv:hep-ph/0503283.
  52. Prog. Part. Nucl. Phys. 123, 103927 (2022).
  53. Nucl. Instrum. Meth. A 988, 164823 (2021), arXiv:2007.00314.
  54. R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, JINST 4, P04018 (2009).
  55. Nucl. Instrum. Meth. A 1057, 168680 (2023), arXiv:2303.05172.
  56. Nucl. Sci. Tech. 34, 83 (2023), arXiv:2211.16768.
  57. A. Strumia and F. Vissani, Precise quasielastic neutrino/nucleon cross-section, Phys. Lett. B 564, 42 (2003), arXiv:astro-ph/0302055.
  58. JHEP 03, 004 (2021), arXiv:2011.06405.
  59. Nucl. Instrum. Meth. A 940, 230 (2019), arXiv:1902.08241.
  60. Eur. Phys. J. C 82, 1168 (2022), arXiv:2205.08629.
  61. Phys. Rev. C 88, 014605 (2013), arXiv:1212.6625.
  62. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84, 024617 (2011), arXiv:1106.0687, [Erratum: Phys.Rev.C 85, 029901 (2012)].
  63. T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83, 054615 (2011), arXiv:1101.2663.
  64. G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83, 073006 (2011), arXiv:1101.2755.
  65. Phys. Rev. Lett. 116, 061801 (2016), arXiv:1508.04233, [Erratum: Phys. Rev. Lett. 118, no.9, 099902(2017)].
  66. Phys. Rev. Lett. 118, 121802 (2017), arXiv:1610.05134.
  67. Phys. Rev. Lett. 131, 021802 (2023), arXiv:2212.10669.
  68. Nature 613, 257 (2023), arXiv:2210.07664.
  69. M. Danilov, New results from the DANSS experiment, PoS ICHEP2022, 616 (2022), arXiv:2211.01208.
  70. Chin. Phys. C 41, 013002 (2017), arXiv:1607.05378.
  71. X. B. Ma et al., Uncertainty analysis of fission fraction for reactor antineutrino experiments, Mod. Phys. Lett. A 31, 1650120 (2016), arXiv:1405.6807.
  72. JHEP 11, 102 (2021), arXiv:2107.03669.
  73. Phys. Rev. C 81, 025807 (2010), arXiv:0907.0066.
  74. JCAP 08, 049 (2013), arXiv:1304.7381.
  75. Phys. Rev. D 82, 033006 (2010), arXiv:0808.2868.
  76. Phys. Rev. D 95, 072006 (2017), arXiv:1610.04802.
  77. E. Mendoza et al., Neutron production induced by α𝛼\alphaitalic_α-decay with Geant4, Nucl. Instrum. Meth. A 960, 163659 (2020), arXiv:1906.03903.
  78. Phys. Rev. D 103, 053001 (2021), arXiv:2008.04633.
  79. J. Cheng et al., Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: III. Quantitative calculations for reactor neutrinos, (2024), arXiv:2404.07429.
  80. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614, 87 (2010), arXiv:0905.2517.
  81. H. Xu et al., Calibration strategy of the JUNO-TAO experiment, Eur. Phys. J. C 82, 1112 (2022), arXiv:2204.03256.
  82. R. Li et al., Detector optimization to reduce the cosmogenic neutron backgrounds in the TAO experiment, JINST 17, P09024 (2022), arXiv:2206.01112.
  83. T. Lin et al., Simulation Software of the JUNO Experiment, (2022), arXiv:2212.10741.
  84. Z. Li et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors, Nucl. Sci. Tech. 32, 49 (2021), arXiv:2101.08901.
  85. G. Huang et al., Improving the energy uniformity for large liquid scintillator detectors, Nucl. Instrum. Meth. A 1001, 165287 (2021), arXiv:2102.03736.
  86. X. Qian et al., Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy, Phys. Rev. D 86, 113011 (2012), arXiv:1210.3651.
  87. JHEP 1403, 028 (2014), arXiv:1311.1822.
  88. Nucl. Instrum. Meth. A 961, 163677 (2020), arXiv:1903.07185.
  89. Chin. Phys. C 38, 090001 (2014).
  90. Phys. Rev. D 60, 053003 (1999).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: