Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advances in laser-plasma interactions using intense vortex laser beams (2405.17852v1)

Published 28 May 2024 in physics.plasm-ph and physics.optics

Abstract: Low-intensity light beams carrying Orbital Angular Momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This paper provides a comprehensive review of recent advances in this area. Compared to conventional laser beams, intense vortex beams exhibit unique properties such as twisted phase fronts, OAM delivery, hollow intensity distribution, and spatially isolated longitudinal fields. These distinct characteristics give rise to a multitude of rich phenomena, profoundly influencing laser-plasma interactions and offering diverse applications. The paper also discusses future prospects and identifies promising general research areas involving vortex beams. These areas include low-divergence particle acceleration, instability suppression, high-energy photon delivery with OAM, and the generation of strong magnetic fields. With growing scientific interest and application potential, the study of intense vortex lasers is poised for rapid development in the coming years.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (185)
  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Optics Communications, vol. 56, no. 3, pp. 219–221, 1985.
  2. J. D. Jackson, Classical electrodynamics. New York, NY: Wiley, 3rd ed. ed., 1999.
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Physical Review A, vol. 45, no. 11, pp. 8185–8189, 1992. PRA.
  4. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Advances in Optics and Photonics, vol. 3, no. 2, pp. 161–204, 2011.
  5. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, “Optical vortices 30 years on: Oam manipulation from topological charge to multiple singularities,” Light: Science & Applications, vol. 8, p. 90, Oct 2019.
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature, vol. 412, p. 313, 2001.
  7. A. Mann, “Core concept: “twisted” light beams promise an optical revolution,” Proceedings of the National Academy of Sciences, vol. 115, no. 22, pp. 5621–5623, 2018.
  8. M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, p. 343, 2011.
  9. M. Zurch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nature Physics, vol. 8, no. 10, pp. 743–746, 2012. 10.1038/nphys2397.
  10. P. R. Ribič, D. Gauthier, and G. De Ninno, “Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum,” Physical Review Letters, vol. 112, p. 203602, May 2014.
  11. G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett., vol. 40, pp. 2037–2040, May 2015.
  12. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nature Photonics, vol. 9, pp. 789–795, Dec 2015.
  13. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Reviews of Modern Physics, vol. 78, no. 2, pp. 309–371, 2006. RMP.
  14. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Reviews of Modern Physics, vol. 81, pp. 1229–1285, 2009.
  15. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Reviews of Modern Physics, vol. 85, no. 2, pp. 751–793, 2013. RMP.
  16. U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Reviews of Modern Physics, vol. 81, no. 2, pp. 445–479, 2009. RMP.
  17. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Reviews of Modern Physics, vol. 85, pp. 1–48, 2013.
  18. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering, vol. 3, p. e3, 2015.
  19. C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps, S. David, J. Barbe, E. Etter, G. Matras, S. Ricaud, and et al., “10 pw peak power femtosecond laser pulses at eli-np,” High Power Laser Science and Engineering, p. 1–5, 2022.
  20. Z. Li, Y. Leng, and R. Li, “Further development of the short-pulse petawatt laser: Trends, technologies, and bottlenecks,” Laser & Photonics Reviews, vol. 17, no. 1, p. 2100705, 2022.
  21. X. Wang, X. Liu, X. Lu, J. Chen, Y. Long, W. Li, H. Chen, X. Chen, P. Bai, Y. Li, Y. Peng, Y. Liu, F. Wu, C. Wang, Z. Li, Y. Xu, X. Liang, Y. Leng, and R. Li, “13.4 fs, 0.1 hz opcpa front end for the 100 pw-class laser facility,” Ultrafast Science, vol. 2022, 2022.
  22. X. Liang, Y. Leng, R. Li, and Z. Xu, “Recent progress on the shanghai superintense ultrafast laser facility (sulf) at siom,” in OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS), p. HTh2B.2, Optica Publishing Group, 2020.
  23. A. Forbes, M. de Oliveira, and M. R. Dennis, “Structured light,” Nature Photonics, vol. 15, pp. 253–262, Apr 2021.
  24. Y. Shi, B. Shen, L. Zhang, X. Zhang, W. Wang, and Z. Xu, “Light fan driven by a relativistic laser pulse,” Physical Review Letters, vol. 112, no. 23, p. 235001, 2014. PRL.
  25. A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of ultraintense laser vortices with plasma mirrors,” Physical Review Letters, vol. 118, no. 3, p. 033902, 2017. PRL.
  26. E. Porat, S. Lightman, I. Cohen, and I. Pomerantz, “Spiral phase plasma mirror,” Journal of Optics, vol. 24, no. 8, p. 085501, 2022.
  27. A. Longman and R. Fedosejevs, “Mode conversion efficiency to laguerre-gaussian oam modes using spiral phase optics,” Opt. Express, vol. 25, pp. 17382–17392, Jul 2017.
  28. J. Y. Bae, C. Jeon, K. H. Pae, C. M. Kim, H. S. Kim, I. Han, W.-J. Yeo, B. Jeong, M. Jeon, D.-H. Lee, D. U. Kim, S. Hyun, H. Hur, K.-S. Lee, G. H. Kim, K. S. Chang, I. W. Choi, C. H. Nam, and I. J. Kim, “Generation of low-order laguerre-gaussian beams using hybrid-machined reflective spiral phase plates for intense laser-plasma interactions,” Results in Physics, vol. 19, p. 103499, 2020.
  29. W. P. Wang, C. Jiang, H. Dong, X. M. Lu, J. F. Li, R. J. Xu, Y. J. Sun, L. H. Yu, Z. Guo, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “Hollow plasma acceleration driven by a relativistic reflected hollow laser,” Phys. Rev. Lett., vol. 125, p. 034801, Jul 2020.
  30. A. Longman and R. Fedosejevs, “Modeling of high intensity orbital angular momentum beams for laser–plasma interactions,” Physics of Plasmas, vol. 29, p. 063109, 06 2022.
  31. M. Burger, J. Murphy, L. Finney, N. Peskosky, J. Nees, K. Krushelnick, and I. Jovanovic, “Wavefront uniformity optimization of laguerre-gaussian ultrafast beams,” in Optica Nonlinear Optics Topical Meeting 2023, p. M2B.2, Optica Publishing Group, 2023.
  32. A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quere, “Plasma holograms for ultrahigh-intensity optics,” Nature Physics, vol. 13, pp. 440–443, 2017.
  33. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express, vol. 12, pp. 3548–3553, Jul 2004.
  34. C. Brabetz, U. Eisenbarth, O. Kester, T. Stoehlker, T. E. Cowan, B. Zielbauer, and V. Bagnoud, “Hollow beam creation with continuous diffractive phase mask at phelix,” in Conference on Lasers and Electro-Optics 2012, p. JTu1K.5, Optica Publishing Group, 2012.
  35. C. Brabetz, S. Busold, T. Cowan, O. Deppert, D. Jahn, O. Kester, M. Roth, D. Schumacher, and V. Bagnoud, “Laser-driven ion acceleration with hollow laser beams,” Physics of Plasmas, vol. 22, no. 1, p. 013105, 2015.
  36. Z. Chen, S. Zheng, X. Lu, X. Wang, Y. Cai, C. Wang, M. Zheng, Y. Ai, Y. Leng, S. Xu, et al., “Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system,” High Power Laser Science and Engineering, vol. 10, p. e32, 2022.
  37. W. Pan, X. Liang, L. Yu, A. Wang, J. Li, and R. Li, “Generation of terawatt-scale vortex pulses based on optical parametric chirped-pulse amplification,” IEEE Photonics Journal, vol. 12, no. 3, pp. 1–8, 2020.
  38. R. Feng, J. Qian, Y. Peng, Y. Li, W. Li, Y. Leng, and R. Li, “Terawatt-class few-cycle short-wave infrared vortex laser,” Ultrafast Science, vol. 3, p. 0039, 2023.
  39. J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated raman scattering,” Nature Communications, vol. 7, p. 10371, 2016.
  40. J. T. Mendonça, B. Thidé, and H. Then, “Stimulated raman and brillouin backscattering of collimated beams carrying orbital angular momentum,” Physical Review Letters, vol. 102, no. 18, p. 185005, 2009. PRL.
  41. R. M. G. M. Trines, E. P. Alves, E. Webb, J. Vieira, F. Fiúza, R. A. Fonseca, L. O. Silva, R. A. Cairns, and R. Bingham, “New criteria for efficient raman and brillouin amplification of laser beams in plasma,” Scientific Reports, vol. 10, p. 19875, Nov 2020.
  42. Y. Wu, C. Zhang, Z. Nie, M. Sinclair, A. Farrell, K. A. Marsh, E. P. Alves, F. Tsung, W. B. Mori, and C. Joshi, “Efficient generation and amplification of intense vortex and vector laser pulses via strongly-coupled stimulated brillouin scattering in plasmas,” Communications Physics, vol. 7, p. 18, Jan 2024.
  43. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Physical Review Letters, vol. 96, no. 16, p. 163905, 2006. PRL.
  44. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express, vol. 19, pp. 4085–4090, Feb 2011.
  45. D. Gauthier, S. Kaassamani, D. Franz, R. Nicolas, J.-T. Gomes, L. Lavoute, D. Gaponov, S. Février, G. Jargot, M. Hanna, W. Boutu, and H. Merdji, “Orbital angular momentum from semiconductor high-order harmonics,” Opt. Lett., vol. 44, pp. 546–549, Feb 2019.
  46. K. Qu, Q. Jia, and N. J. Fisch, “Plasma q𝑞qitalic_q-plate for generation and manipulation of intense optical vortices,” Physical Review E, vol. 96, no. 5, p. 053207, 2017. PRE.
  47. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Physics of Plasmas, vol. 1, pp. 745–757, 03 1994.
  48. R. Lichters, J. Meyer‐ter‐Vehn, and A. Pukhov, “Short‐pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Physics of Plasmas, vol. 3, pp. 3425–3437, 09 1996.
  49. T. Baeva, S. Gordienko, and A. Pukhov, “Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma,” Phys. Rev. E, vol. 74, p. 046404, Oct 2006.
  50. S. Li, X. Zhang, W. Gong, Z. Bu, and B. Shen, “Spin-to-orbital angular momentum conversion in harmonic generation driven by intense circularly polarized laser,” New Journal of Physics, vol. 22, p. 013054, jan 2020.
  51. Y. Shi, D. R. Blackman, and A. Arefiev, “Electron acceleration using twisted laser wavefronts,” Plasma Physics and Controlled Fusion, vol. 63, no. 12, p. 125032, 2021.
  52. J. W. Wang, M. Zepf, and S. G. Rykovanov, “Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions,” Nature Communications, vol. 10, p. 5554, Dec 2019.
  53. L. Yi, “High-harmonic generation and spin-orbit interaction of light in a relativistic oscillating window,” Phys. Rev. Lett., vol. 126, p. 134801, Mar 2021.
  54. R. Aboushelbaya, K. Glize, A. F. Savin, M. Mayr, B. Spiers, R. Wang, J. Collier, M. Marklund, R. M. G. M. Trines, R. Bingham, and P. A. Norreys, “Orbital angular momentum coupling in elastic photon-photon scattering,” Phys. Rev. Lett., vol. 123, p. 113604, Sep 2019.
  55. R. Aboushelbaya, K. Glize, A. F. Savin, M. Mayr, B. Spiers, R. Wang, N. Bourgeois, C. Spindloe, R. Bingham, and P. A. Norreys, “Measuring the orbital angular momentum of high-power laser pulses,” Physics of Plasmas, vol. 27, p. 053107, 05 2020.
  56. Y. Zhai, J. Fan, H. Qiao, T. Zhou, J. Wu, and Q. Dai, “The rotational doppler effect of twisted photons in scattered fields,” Laser & Photonics Reviews, vol. 17, no. 10, p. 2201022, 2023.
  57. H. MINAGAWA, S. YOSHIMURA, K. TERASAKA, and M. ARAMAKI, “Analysis of azimuthal doppler shift of anisotropically absorbed laguerre-gaussian beam propagating in transverse flow,” Plasma and Fusion Research, vol. 17, pp. 1401099–1401099, 2022.
  58. X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Physical Review Letters, vol. 114, no. 17, p. 173901, 2015. PRL.
  59. X. Zhang, B. Shen, Y. Shi, L. Zhang, L. Ji, X. Wang, Z. Xu, and T. Tajima, “Intense harmonics generation with customized photon frequency and optical vortex,” New Journal of Physics, vol. 18, no. 8, p. 083046, 2016.
  60. S. Li, B. Shen, X. Zhang, Z. Bu, and W. Gong, “Conservation of orbital angular momentum for high harmonic generation of fractional vortex beams,” Optics Express, vol. 26, pp. 23460–23470, Sep 2018.
  61. J. Vieira, R. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Physical Review Letters, vol. 117, no. 26, p. 265001, 2016. PRL.
  62. Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nature Photonics, vol. 12, pp. 489–494, Aug 2018.
  63. Z. Nie, C.-H. Pai, J. Zhang, X. Ning, J. Hua, Y. He, Y. Wu, Q. Su, S. Liu, Y. Ma, Z. Cheng, W. Lu, H.-H. Chu, J. Wang, C. Zhang, W. B. Mori, and C. Joshi, “Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses,” Nature Communications, vol. 11, p. 2787, Jun 2020.
  64. X.-L. Zhu, M. Chen, S.-M. Weng, P. McKenna, Z.-M. Sheng, and J. Zhang, “Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm,” Phys. Rev. Appl., vol. 12, p. 054024, Nov 2019.
  65. X.-L. Zhu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas,” Light: Science & Applications, vol. 9, p. 46, Mar 2020.
  66. X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas,” Matter and Radiation at Extremes, vol. 7, p. 014403, 12 2021.
  67. C.-K. Huang, C. Zhang, Z. Nie, K. A. Marsh, C. E. Clayton, and C. Joshi, “Conservation of angular momentum in second harmonic generation from under-dense plasmas,” Communications Physics, vol. 3, p. 213, Nov 2020.
  68. L. Zhang, B. Shen, X. Zhang, S. Huang, Y. Shi, C. Liu, W. Wang, J. Xu, Z. Pei, and Z. Xu, “Deflection of a reflected intense vortex laser beam,” Physical Review Letters, vol. 117, no. 11, p. 113904, 2016. PRL.
  69. W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Applied Physics Letters, vol. 107, p. 041119, 07 2015.
  70. R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Raman scattering of a laser beam carrying an orbital angular momentum,” Physics of Plasmas, vol. 29, p. 062101, 06 2022.
  71. Y. Ji, C.-W. Lian, Y. Shi, R. Yan, S. Cao, C. Ren, and J. Zheng, “Generating axial magnetic fields via two plasmon decay driven by a twisted laser,” Phys. Rev. Res., vol. 5, p. L022025, May 2023.
  72. J. T. Mendonca, S. Ali, and B. Thidé, “Plasmons with orbital angular momentum,” Physics of Plasmas (1994-present), vol. 16, no. 11, p. 112103, 2009.
  73. J. T. Mendonça, “Twisted waves in a plasma,” Plasma Physics and Controlled Fusion, vol. 54, no. 12, p. 124031, 2012.
  74. J. T. Mendonça, “Kinetic description of electron plasma waves with orbital angular momentum,” Physics of Plasmas (1994-present), vol. 19, no. 11, p. 112113, 2012.
  75. J. T. Mendonca and P. S. B. Joao, “Twisted waves in a magnetized plasma,” Plasma Physics and Controlled Fusion, vol. 59, no. 5, p. 054003, 2017.
  76. J.T.Mendonça, “Emission of twisted photons from quantum vacuum,” EPL (Europhysics Letters), vol. 120, no. 6, p. 61001, 2017.
  77. D. R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Kinetic plasma waves carrying orbital angular momentum,” Physical Review E, vol. 100, p. 013204, Jul 2019.
  78. D. R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Twisted kinetic plasma waves,” Journal of Russian Laser Research, vol. 40, pp. 419–428, Sep 2019.
  79. D. R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Nonlinear landau damping of plasma waves with orbital angular momentum,” Phys. Rev. E, vol. 102, p. 033208, Sep 2020.
  80. D. R. Blackman, R. Nuter, P. Korneev, A. Arefiev, and V. T. Tikhonchuk, “Kinetic phenomena of helical plasma waves with orbital angular momentum,” Physics of Plasmas, vol. 29, p. 072105, 07 2022.
  81. J. P. Palastro, K. G. Miller, R. K. Follett, D. Ramsey, K. Weichman, A. V. Arefiev, and D. H. Froula, “Space-time structured plasma waves,” Phys. Rev. Lett., vol. 132, p. 095101, Feb 2024.
  82. Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, and R. J. Kingham, “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Physical Review Letters, vol. 121, p. 145002, Oct 2018.
  83. Y. Shi, D. R. Blackman, R. J. Kingham, and A. Arefiev, “Twisted plasma waves driven by twisted ponderomotive force,” JUSTC, vol. 53, no. 1, p. 3, 2023.
  84. M. G. Haines, “Generation of an axial magnetic field from photon spin,” Physical Review Letters, vol. 87, no. 13, p. 135005, 2001. PRL.
  85. S. Ali, J. R. Davies, and J. T. Mendonca, “Inverse faraday effect with linearly polarized laser pulses,” Phys. Rev. Lett., vol. 105, p. 035001, Jul 2010.
  86. R. Nuter, P. Korneev, E. Dmitriev, I. Thiele, and V. T. Tikhonchuk, “Gain of electron orbital angular momentum in a direct laser acceleration process,” Phys. Rev. E, vol. 101, p. 053202, May 2020.
  87. A. Longman and R. Fedosejevs, “Kilo-tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams,” Phys. Rev. Res., vol. 3, p. 043180, Dec 2021.
  88. Y. Shi, A. Arefiev, J. X. Hao, and J. Zheng, “Efficient generation of axial magnetic field by multiple laser beams with twisted pointing directions,” Phys. Rev. Lett., vol. 130, p. 155101, Apr 2023.
  89. T. V. Liseykina, S. V. Popruzhenko, and A. Macchi, “Inverse faraday effect driven by radiation friction,” New Journal of Physics, vol. 18, p. 072001, jul 2016.
  90. V. Valenzuela-Villaseca, L. G. Suttle, F. Suzuki-Vidal, J. W. D. Halliday, S. Merlini, D. R. Russell, E. R. Tubman, J. D. Hare, J. P. Chittenden, M. E. Koepke, E. G. Blackman, and S. V. Lebedev, “Characterization of quasi-keplerian, differentially rotating, free-boundary laboratory plasmas,” Phys. Rev. Lett., vol. 130, p. 195101, May 2023.
  91. Y. Wu, X. Xu, C. Zhang, Z. Nie, M. Sinclair, A. Farrell, K. A. Marsh, J. Hua, W. Lu, W. B. Mori, and C. Joshi, “Efficient generation of tunable magnetic and optical vortices using plasmas,” Phys. Rev. Res., vol. 5, p. L012011, Jan 2023.
  92. A. Picón, A. Benseny, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Transferring orbital and spin angular momenta of light to atoms,” New Journal of Physics, vol. 12, no. 8, p. 083053, 2010.
  93. Z.-W. Lu, L. Guo, Z.-Z. Li, M. Ababekri, F.-Q. Chen, C. Fu, C. Lv, R. Xu, X. Kong, Y.-F. Niu, and J.-X. Li, “Manipulation of giant multipole resonances via vortex γ𝛾\gammaitalic_γ photons,” Phys. Rev. Lett., vol. 131, p. 202502, Nov 2023.
  94. U. D. Jentschura and V. G. Serbo, “Generation of high-energy photons with large orbital angular momentum by compton backscattering,” Physical Review Letters, vol. 106, p. 013001, Jan 2011.
  95. C. Liu, B. Shen, X. Zhang, Y. Shi, L. Ji, W. Wang, L. Yi, L. Zhang, T. Xu, Z. Pei, and Z. Xu, “Generation of gamma-ray beam with orbital angular momentum in the qed regime,” Physics of Plasmas, vol. 23, no. 9, p. 093120, 2016.
  96. S. Sasaki and I. McNulty, “Proposal for generating brilliant x-ray beams carrying orbital angular momentum,” Physical Review Letters, vol. 100, p. 124801, Mar 2008.
  97. J. Bahrdt, K. Holldack, P. Kuske, R. Müller, M. Scheer, and P. Schmid, “First observation of photons carrying orbital angular momentum in undulator radiation,” Physical Review Letters, vol. 111, p. 034801, Jul 2013.
  98. E. Hemsing, A. Marinelli, and J. B. Rosenzweig, “Generating optical orbital angular momentum in a high-gain free-electron laser at the first harmonic,” Physical Review Letters, vol. 106, p. 164803, Apr 2011.
  99. E. Hemsing and A. Marinelli, “Echo-enabled x-ray vortex generation,” Physical Review Letters, vol. 109, p. 224801, 2012.
  100. E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, and J. B. Rosenzweig, “Coherent optical vortices from relativistic electron beams,” Nature Physics, vol. 9, no. 9, pp. 549–553, 2013.
  101. P. Rebernik Ribič, B. Rösner, D. Gauthier, E. Allaria, F. Döring, L. Foglia, L. Giannessi, N. Mahne, M. Manfredda, C. Masciovecchio, R. Mincigrucci, N. Mirian, E. Principi, E. Roussel, A. Simoncig, S. Spampinati, C. David, and G. De Ninno, “Extreme-ultraviolet vortices from a free-electron laser,” Physical Review X, vol. 7, no. 3, p. 031036, 2017. PRX.
  102. C. A. Ur, “Gamma beam system at ELI-NP,” AIP Conference Proceedings, vol. 1645, pp. 237–245, 02 2015.
  103. F. Negoita, M. Roth, P. Thirolf, S. Tudisco, F. Hannachi, S. Moustaizis, I. Pomerantz, P. Mckenna, J. Fuchs, K. Sphor, G. Acbas, A. Anzalone, P. Audebert, S. Balascuta, F. Cappuzzello, M. Cernaianu, S. Chen, I. Dancus, R. Freeman, H. Geissel, P. Ghenuche, L. Gizzi, F. Gobet, G. Gosselin, M. Gugiu, D. Higginson, E. d’Humiêres, C. Ivan, D. Jaroszynski, S. Kar, L. Lamia, V. Leca, L. Neagu, G. Lanzalone, V. Meot, S. Mirfayzi, I. Mitu, P. Morel, C. Murphy, C. Petcu, H. Petrascu, C. Petrone, P. Raczka, M. Risca, F. Rotaru, J. Santos, D. Schumacher, D. Stutman, M. Tarisien, M. Tataru, B. Tatulea, I. Turcu, M. Versteegen, D. Ursescu, S. Gales, and N. Zamfir, “Laser driven nuclear physics at ELI-NP,” Romanian Reports in Physics, vol. 68, pp. S37–S144, 2016.
  104. U. D. Jentschura and V. G. Serbo, “Compton upconversion of twisted photons: backscattering of particles with non-planar wave functions,” The European Physical Journal C, vol. 71, p. 1571, Mar 2011.
  105. S. Stock, A. Surzhykov, S. Fritzsche, and D. Seipt, “Compton scattering of twisted light: Angular distribution and polarization of scattered photons,” Physical Review A, vol. 92, p. 013401, Jul 2015.
  106. V. Petrillo, G. Dattoli, I. Drebot, and F. Nguyen, “Compton scattered x-gamma rays with orbital momentum,” Physical Review Letters, vol. 117, no. 12, p. 123903, 2016.
  107. L. Ju, C. Zhou, T. Huang, K. Jiang, C. Wu, T. Long, L. Li, H. Zhang, M. Yu, and S. Ruan, “Generation of collimated bright gamma rays with controllable angular momentum using intense laguerre-gaussian laser pulses,” Phys. Rev. Appl., vol. 12, p. 014054, Jul 2019.
  108. X.-L. Zhu, M. Chen, T.-P. Yu, S.-M. Weng, L.-X. Hu, P. McKenna, and Z.-M. Sheng, “Bright attosecond γ𝛾\gammaitalic_γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets,” Applied Physics Letters, vol. 112, p. 174102, 04 2018.
  109. Y.-T. Hu, J. Zhao, H. Zhang, Y. Lu, W.-Q. Wang, L.-X. Hu, F.-Q. Shao, and T.-P. Yu, “Attosecond γ𝛾\gammaitalic_γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses,” Applied Physics Letters, vol. 118, p. 054101, 02 2021.
  110. Y. Taira, T. Hayakawa, and M. Katoh, “Gamma-ray vortices from nonlinear inverse thomson scattering of circularly polarized light,” Scientific Reports, vol. 7, p. 5018, Jul 2017.
  111. J.-Y. Wang, Q. Zhao, M. Ababekri, and J.-X. Li, “Radiation-reaction effects on the production of twisted photon in the nonlinear inverse thomson scattering,” arXiv preprint arXiv:2312.05580, 2023.
  112. Y. Chen, J. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “γ𝛾\gammaitalic_γ-ray beams with large orbital angular momentum via nonlinear compton scattering with radiation reaction,” Physical Review Letters, vol. 121, no. 7, p. 074801, 2018. PRL.
  113. Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Generation of twisted γ𝛾\gammaitalic_γ-ray radiation by nonlinear thomson scattering of twisted light,” Matter and Radiation at Extremes, vol. 4, no. 2, p. 024401, 2019.
  114. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nature Photonics, vol. 9, pp. 796–808, Dec 2015.
  115. M. Katoh, M. Fujimoto, N. S. Mirian, T. Konomi, Y. Taira, T. Kaneyasu, M. Hosaka, N. Yamamoto, A. Mochihashi, Y. Takashima, K. Kuroda, A. Miyamoto, K. Miyamoto, and S. Sasaki, “Helical phase structure of radiation from an electron in circular motion,” Scientific Reports, vol. 7, no. 1, p. 6130, 2017.
  116. M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, and Y. Takashima, “Angular momentum of twisted radiation from an electron in spiral motion,” Physical Review Letters, vol. 118, no. 9, p. 094801, 2017. PRL.
  117. X. Zhang, B. Shen, L. Zhang, J. Xu, X. Wang, W. Wang, L. Yi, and Y. Shi, “Proton acceleration in underdense plasma by ultraintense laguerre–gaussian laser pulse,” New Journal of Physics, vol. 16, no. 12, p. 123051, 2014.
  118. J. Vieira and J. Mendonca, “Nonlinear laser driven donut wakefields for positron and electron acceleration,” Physical Review Letters, vol. 112, no. 21, p. 215001, 2014. PRL.
  119. J. T. Mendonça and J. Vieira, “Donut wakefields generated by intense laser pulses with orbital angular momentum,” Physics of Plasmas (1994-present), vol. 21, no. 3, p. 033107, 2014.
  120. G. Zhang, M. Chen, C. B. Schroeder, J. Luo, M. Zeng, F. Li, L. Yu, S. Weng, Y. Ma, T. Yu, Z. Sheng, and E. Esarey, “Acceleration and evolution of a hollow electron beam in wakefields driven by a laguerre-gaussian laser pulse,” Physics of Plasmas, vol. 23, no. 3, p. 033114, 2016.
  121. G. Zhang, M. Chen, J. Luo, M. Zeng, T. Yuan, J. Yu, Y. Ma, T. Yu, L. Yu, S. Weng, and Z. Sheng, “Acceleration of on-axis and ring-shaped electron beams in wakefields driven by laguerre-gaussian pulses,” Journal of Applied Physics, vol. 119, no. 10, p. 103101, 2016.
  122. K. H. Pae, H. Song, C.-M. Ryu, C. H. Nam, and C. M. Kim, “Low-divergence relativistic proton jet from a thin solid target driven by an ultra-intense circularly polarized laguerre–gaussian laser pulse,” Plasma Physics and Controlled Fusion, vol. 62, p. 055009, mar 2020.
  123. C. Willim, J. Vieira, V. Malka, and L. O. Silva, “Proton acceleration with intense twisted laser light,” Phys. Rev. Res., vol. 5, p. 023083, May 2023.
  124. H. Dong, W. P. Wang, J. Z. He, Z. Y. Shi, Y. X. Leng, R. X. Li, and Z. Z. Xu, “Self-generated magnetic collimation mechanism driven by ultra-intense LG laser,” Physics of Plasmas, vol. 30, p. 083101, 08 2023.
  125. T. C. Wilson, Z.-M. Sheng, P. McKenna, and B. Hidding, “Self-focusing, compression and collapse of ultrashort weakly-relativistic laguerre–gaussian lasers in near-critical plasma,” Journal of Physics Communications, vol. 7, p. 035002, mar 2023.
  126. S. Busold, A. Almomani, V. Bagnoud, W. Barth, S. Bedacht, A. Blažević, O. Boine-Frankenheim, C. Brabetz, T. Burris-Mog, T. Cowan, O. Deppert, M. Droba, H. Eickhoff, U. Eisenbarth, K. Harres, G. Hoffmeister, I. Hofmann, O. Jaeckel, R. Jaeger, M. Joost, S. Kraft, F. Kroll, M. Kaluza, O. Kester, Z. Lecz, T. Merz, F. Nürnberg, H. Al-Omari, A. Orzhekhovskaya, G. Paulus, J. Polz, U. Ratzinger, M. Roth, G. Schaumann, P. Schmidt, U. Schramm, G. Schreiber, D. Schumacher, T. Stoehlker, A. Tauschwitz, W. Vinzenz, F. Wagner, S. Yaramyshev, and B. Zielbauer, “Shaping laser accelerated ions for future applications – the light collaboration,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 740, pp. 94–98, 2014. Proceedings of the first European Advanced Accelerator Concepts Workshop 2013.
  127. C. Jeon, S. G. Lee, H. W. Lee, J. H. Sung, S. K. Lee, I. W. Choi, and C. H. Nam, “Towards the manipulation of relativistic laguerre-gaussian laser pulse,” Conference on Lasers and Electro-Optics, p. JTu2A.140, 2018.
  128. Y. Cai, X. Lu, and Q. Lin, “Hollow gaussian beams and their propagation properties,” Opt. Lett., vol. 28, pp. 1084–1086, Jul 2003.
  129. G. F. Quinteiro, F. Schmidt-Kaler, and C. T. Schmiegelow, “Twisted-light–ion interaction: The role of longitudinal fields,” Phys. Rev. Lett., vol. 119, p. 253203, Dec 2017.
  130. Y. Shi, D. Blackman, D. Stutman, and A. Arefiev, “Generation of ultrarelativistic monoenergetic electron bunches via a synergistic interaction of longitudinal electric and magnetic fields of a twisted laser,” Phys. Rev. Lett., vol. 126, p. 234801, Jun 2021.
  131. Y. Shi, D. R. Blackman, P. Zhu, and A. Arefiev, “Electron pulse train accelerated by a linearly polarized laguerre–gaussian laser beam,” High Power Laser Science and Engineering, vol. 10, p. e45, 2022.
  132. D. R. Blackman, Y. Shi, S. R. Klein, M. Cernaianu, D. Doria, P. Ghenuche, and A. Arefiev, “Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams,” Communications Physics, vol. 5, no. 1, p. 116, 2022.
  133. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett., vol. 119, p. 094801, Aug 2017.
  134. N. Zaïm, D. Guénot, L. Chopineau, A. Denoeud, O. Lundh, H. Vincenti, F. Quéré, and J. Faure, “Interaction of ultraintense radially-polarized laser pulses with plasma mirrors,” Phys. Rev. X, vol. 10, p. 041064, Dec 2020.
  135. W. P. Wang, C. Jiang, B. F. Shen, F. Yuan, Z. M. Gan, H. Zhang, S. H. Zhai, and Z. Z. Xu, “New optical manipulation of relativistic vortex cutter,” Physical Review Letters, vol. 122, p. 024801, Jan 2019.
  136. C. Baumann and A. Pukhov, “Electron dynamics in twisted light modes of relativistic intensity,” Physics of Plasmas, vol. 25, no. 8, p. 083114, 2018.
  137. L. Hu, T. Yu, Y. Lu, G. Zhang, D. Zou, H. Zhang, Z. Ge, Y. Yin, and F. Shao, “Dynamics of the interaction of relativistic laguerre-gaussian laser pulses with a wire target,” Plasma Physics and Controlled Fusion, vol. 61, p. 025009, 2018.
  138. L. Hu, T. Yu, H. Li, Y. Yin, P. McKenna, and F. Shao, “Dense relativistic electron mirrors from a laguerre gaussian laser-irradiated micro-droplet,” Optics Letters, vol. 43, pp. 2615–2618, Jun 2018.
  139. Y. Guo, X. Zhang, D. Xu, X. Guo, B. Shen, and K. Lan, “Suppression of stimulated raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle,” Matter and Radiation at Extremes, vol. 8, no. 3, p. 035902, 2023.
  140. D. P. Ghai, “Generation of optical vortices with an adaptive helical mirror,” Applied Optics, vol. 50, pp. 1374–1381, Apr 2011.
  141. J. A. Arteaga, A. Serbeto, K. H. Tsui, and J. T. Mendonça, “Light spring amplification in a multi-frequency raman amplifier,” Physics of Plasmas, vol. 25, no. 12, p. 123111, 2018.
  142. M. Piccardo, M. de Oliveira, V. R. Policht, M. Russo, B. Ardini, M. Corti, G. Valentini, J. Vieira, C. Manzoni, G. Cerullo, et al., “Broadband control of topological–spectral correlations in space–time beams,” Nature Photonics, vol. 17, pp. 822–828, 2023.
  143. Q. Lin, F. Feng, Y. Cai, X. Lu, X. Zeng, C. Wang, S. Xu, J. Li, and X. Yuan, “Direct space–time manipulation mechanism for spatio-temporal coupling of ultrafast light field,” Nature Communications, vol. 15, p. 2416, Mar 2024.
  144. J. Vieira, J. T. Mendonça, and F. Quere, “Optical control of the topology of laser-plasma accelerators,” Physical Review Letters, vol. 121, no. 5, p. 054801, 2018. PRL.
  145. J. Luís Martins, J. Vieira, J. Ferri, and T. Fülöp, “Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum,” Scientific Reports, vol. 9, p. 9840, Jul 2019.
  146. L. Ju, C. Zhou, K. Jiang, T. Huang, H. Zhang, T. Cai, J. Cao, B. Qiao, and S. Ruan, “Manipulating the topological structure of ultrarelativistic electron beams using laguerre–gaussian laser pulse,” New Journal of Physics, vol. 20, no. 6, p. 063004, 2018.
  147. A. P. Sukhorukov and V. V. Yangirova, “Spatio-temporal vortices: properties, generation and recording,” in Nonlinear Optics Applications (M. A. Karpierz, A. D. Boardman, and G. I. Stegeman, eds.), vol. 5949, p. 594906, International Society for Optics and Photonics, SPIE, 2005.
  148. K. Y. Bliokh and F. Nori, “Spatiotemporal vortex beams and angular momentum,” Phys. Rev. A, vol. 86, p. 033824, Sep 2012.
  149. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Physics Reports, vol. 592, pp. 1–38, 2015. Transverse and longitudinal angular momenta of light.
  150. S. W. Hancock, S. Zahedpour, and H. M. Milchberg, “Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses,” Phys. Rev. Lett., vol. 127, p. 193901, Nov 2021.
  151. N. Jhajj, I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Spatiotemporal optical vortices,” Phys. Rev. X, vol. 6, p. 031037, Sep 2016.
  152. S. W. Hancock, S. Zahedpour, A. Goffin, and H. M. Milchberg, “Free-space propagation of spatiotemporal optical vortices,” Optica, vol. 6, pp. 1547–1553, Dec 2019.
  153. S. W. Hancock, S. Zahedpour, A. Goffin, and H. M. Milchberg, “Spatiotemporal torquing of light,” Phys. Rev. X, vol. 14, p. 011031, Feb 2024.
  154. A. Chong, C. Wan, J. Chen, and Q. Zhan, “Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum,” Nature Photonics, vol. 14, no. 6, pp. 350–354, 2020.
  155. K. Y. Bliokh, “Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction,” Phys. Rev. Lett., vol. 126, p. 243601, Jun 2021.
  156. C. Wan, J. Chen, A. Chong, and Q. Zhan, “Photonic orbital angular momentum with controllable orientation,” National Science Review, vol. 9, p. nwab149, 08 2021.
  157. C. Wan, J. Chen, A. Chong, and Q. Zhan, “Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum,” Science Bulletin, vol. 65, no. 16, pp. 1334–1336, 2020.
  158. H. Wang, C. Guo, W. Jin, A. Y. Song, and S. Fan, “Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines,” Optica, vol. 8, pp. 966–971, Jul 2021.
  159. M. Mazanov, D. Sugic, M. A. Alonso, F. Nori, and K. Y. Bliokh, “Transverse shifts and time delays of spatiotemporal vortex pulses reflected and refracted at a planar interface,” Nanophotonics, vol. 11, no. 4, pp. 737–744, 2022.
  160. S. W. Hancock, S. Zahedpour, and H. M. Milchberg, “Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum,” Optica, vol. 8, pp. 594–597, May 2021.
  161. G. Gui, N. J. Brooks, H. C. Kapteyn, M. M. Murnane, and C.-T. Liao, “Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light,” Nature Photonics, vol. 15, pp. 608–613, Aug 2021.
  162. Y. Fang, S. Lu, and Y. Liu, “Controlling photon transverse orbital angular momentum in high harmonic generation,” Phys. Rev. Lett., vol. 127, p. 273901, Dec 2021.
  163. J. Chen, C. Wan, A. Chong, and Q. Zhan, “Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum,” Opt. Express, vol. 28, pp. 18472–18478, Jun 2020.
  164. G. Rui, B. Yang, X. Ying, B. Gu, Y. Cui, and Q. Zhan, “Numerical modeling for the characteristics study of a focusing ultrashort spatiotemporal optical vortex,” Opt. Express, vol. 30, pp. 37314–37322, Oct 2022.
  165. J. Qiu, B. Shen, X. Zhang, Z. Bu, L. Yi, L. Zhang, and Z. Xu, “Vortex beam of tilted orbital angular momentum generated from grating,” Plasma Physics and Controlled Fusion, vol. 61, p. 105001, aug 2019.
  166. W. Chen, X. Zhang, D. Xu, X. Guo, and B. Shen, “Reflection of vortex beam from relativistic flying mirror,” Scientific Reports, vol. 12, p. 12524, Jul 2022.
  167. X. Zhang, L. Zhang, and B. Shen, “Generation of isolated intense vortex laser with transverse angular momentum,” New Journal of Physics, vol. 24, p. 113041, nov 2022.
  168. L. Zhang, L. Ji, and B. Shen, “Intense harmonic generation driven by a relativistic spatiotemporal vortex beam,” High Power Laser Science and Engineering, vol. 10, p. 06000e46, 6 2022.
  169. Y. Wu, Z. Nie, F. Li, C. Zhang, K. A. Marsh, W. B. Mori, and C. Joshi, “Spatial and spatiotemporal vortex harmonics carrying controllable orbital angular momentum generated by plasma mirrors,” in Optica Nonlinear Optics Topical Meeting 2023, p. M2B.6, Optica Publishing Group, 2023.
  170. X. Guo, L. Zhang, X. Zhang, and B. Shen, “Deflection of a reflected intense spatiotemporal optical vortex beam,” Opt. Lett., vol. 48, pp. 1610–1613, Apr 2023.
  171. M. S. Le, G. A. Hine, A. Goffin, J. P. Palastro, and H. M. Milchberg, “Self-focused pulse propagation is mediated by spatiotemporal optical vortices,” arXiv preprint arXiv:2403.04669, 2024.
  172. Zhaoyang, Li and Yuxin, Leng and Ruxin Li, “From pulse-front distortions of ultra-intense ultrashort lasers to group-velocity controls of x-shape optical wave-packets,” Laser & Optoelectronics Progress, vol. 61, no. 5, p. 0500001, 2024.
  173. H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett., vol. 108, p. 113904, Mar 2012.
  174. J. P. Palastro, J. L. Shaw, P. Franke, D. Ramsey, T. T. Simpson, and D. H. Froula, “Dephasingless laser wakefield acceleration,” Phys. Rev. Lett., vol. 124, p. 134802, Mar 2020.
  175. D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nature Photonics, vol. 12, pp. 262–265, May 2018.
  176. C. Hernández-García, A. Picón, J. San Román, and L. Plaja, “Attosecond extreme ultraviolet vortices from high-order harmonic generation,” Physical Review Letters, vol. 111, no. 8, p. 083602, 2013. PRL.
  177. K. Y. Bliokh, Y. P. Bliokh, S. Savel’ev, and F. Nori, “Semiclassical dynamics of electron wave packet states with phase vortices,” Physical Review Letters, vol. 99, no. 19, p. 190404, 2007. PRL.
  178. H. Martin, “Photon orbital angular momentum in astrophysics,” The Astrophysical Journal, vol. 597, no. 2, p. 1266, 2003.
  179. John Wiley & Sons, Ltd, 2011.
  180. F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nature Physics, vol. 7, pp. 195–197, Mar 2011.
  181. R. L. Stenzel and J. M. Urrutia, “Helicons in unbounded plasmas,” Phys. Rev. Lett., vol. 114, p. 205005, May 2015.
  182. B. Iwo and B. Zofia, “Gravitational waves carrying orbital angular momentum,” New Journal of Physics, vol. 18, no. 2, p. 023022, 2016.
  183. T. I. Tsujimura and S. Kubo, “Propagation properties of electron cyclotron waves with helical wavefronts in magnetized plasma,” Physics of Plasmas, vol. 28, p. 012502, 01 2021.
  184. S. Zhang, H. Li, J. He, S. Wu, B. Xu, and L. Bai, “Scattering by a low-velocity charge with applied magnetic fields in a Laguerre–Gaussian beam,” Physics of Plasmas, vol. 29, p. 123504, 12 2022.
  185. R. Rop, I. A. Litvin, and A. Forbes, “Generation and propagation dynamics of obstructed and unobstructed rotating orbital angular momentum-carrying helicon beams,” Journal of Optics, vol. 14, p. 035702, feb 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 87 likes.