Papers
Topics
Authors
Recent
2000 character limit reached

Survey of Graph Neural Network for Internet of Things and NextG Networks (2405.17309v1)

Published 27 May 2024 in cs.LG and cs.NI

Abstract: The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (294)
  1. Z. Qadir, K. N. Le, N. Saeed, and H. S. Munawar, “Towards 6G Internet of Things: Recent Advances, Use Cases, and Open Challenges,” Elsevier ICT Express, vol. 9, pp. 296–312, June 2023.
  2. S. Abdulmalek, A. Nasir, W. A. Jabbar, M. A. M. Almuhaya, A. K. Bairagi, M. A.-M. Khan, and S.-H. Kee, “IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review,” Healthcare, vol. 10, pp. 2227–9032, October 2022.
  3. R. Song, J. Vanthienen, W. Cui, Y. Wang, and L. Huang, “Context-Aware BPM Using IoT-Integrated Context Ontologies and IoT-Enhanced Decision Models,” in Proc. of IEEE Conference on Business Informatics (CBI), (Moscow, Russia), August 2019.
  4. N. R. Sogi, P. Chatterjee, U. Nethra, and V. Suma, “SMARISA: A Raspberry Pi Based Smart Ring for Women Safety Using IoT,” in Proc. of International Conference on Inventive Research in Computing Applications (ICIRCA), (Coimbatore, India), July 2018.
  5. S. K. Vishwakarma, P. Upadhyaya, B. Kumari, and A. K. Mishra, “Smart Energy Efficient Home Automation System Using IoT,” in Proc. of International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), (Ghaziabad, India), April 2019.
  6. D. Bright, “An Integrative Review of the Potential of Wireless Assistive Technologies and Internet of Things (IoT) to Improve Accessibility to Education for Students with Disabilities,” Assistive Technology, vol. 34, pp. 653–660, November 2022.
  7. T. Haaker, P. T. M. Ly, N. Nguyen-Thanh, and H. T. H. Nguyen, “Business Model Innovation Through the Application of the Internet-of-Things: A Comparative Analysis,” Elsevier Journal of Business Research, vol. 126, pp. 126–136, March 2021.
  8. S. Piramuthu, “IoT, Environmental Sustainability, Agricultural Supply Chains,” Elsevier Procedia Computer Science, vol. 204, pp. 811–816, 2022.
  9. B. C. Mallikarjun, S. Harshitha, B. K. Harshita, S. Bhavani, and S. Tarwey, “Smart Refrigerator: An IOT and Machine learning based Approach,” in Proc. of International Conference for Emerging Technology (INCET), (Belgaum, India), June 2020.
  10. M. I. Mohamed Ariff, F. D. Mohamad Fadzir, N. I. Arshad, S. Ahmad, K. A. Salleh, and J. A. Wahab, “Design and Development of a smart garage door system,” in Proc. of IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), (Toronto, ON, Canada), June 2022.
  11. V. Bali, S. Mathur, V. Sharma, and D. Gaur, “Smart Traffic Management System using IoT Enabled Technology,” in Proc. of International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), (Greater Noida, India), December 2020.
  12. T. J. Sheng, M. S. Islam, N. Misran, M. H. Baharuddin, H. Arshad, M. R. Islam, M. E. H. Chowdhury, H. Rmili, and M. T. Islam, “An Internet of Things Based Smart Waste Management System Using LoRa and Tensorflow Deep Learning Model,” IEEE Access, vol. 8, no. August, pp. 148793–148811, 2020.
  13. M. Orlando, A. Estebsari, E. Pons, M. Pau, S. Quer, M. Poncino, L. Bottaccioli, and E. Patti, “A Smart Meter Infrastructure for Smart Grid IoT Applications,” IEEE Internet of Things Journal, vol. 9, pp. 12529–12541, July 2022.
  14. K. Hamedani, L. Liu, J. Jagannath, and Y. Yi, “Adversarial Classification of the Attacks on Smart Grids Using Game Theory and Deep Learning,” in Proc. of ACM Workshop on Wireless Security and Machine Learning (WiseML), (Abu Dhabi, UAE), July 2021.
  15. G. Chiesa, D. Di Vita, A. Ghadirzadeh, A. H. Muñoz Herrera, and J. C. Leon Rodriguez, “A Fuzzy-Logic IoT Lighting and Shading Control System for Smart Buildings,” Automation in Construction, vol. 120, p. 103397, December 2020.
  16. A. Rahman, M. K. Nasir, Z. Rahman, A. Mosavi, S. S., and B. Minaei-Bidgoli, “DistBlockBuilding: A Distributed Blockchain-Based SDN-IoT Network for Smart Building Management,” IEEE Access, vol. 8, pp. 140008–140018, July 2020.
  17. S. Le, Q. Lei, X. Wei, J. Zhong, Y. Wang, J. Zhou, and W. Wang, “Smart Elevator Cotrol System Based on Human Hand Gesture Recognition,” in Proc. of IEEE International Conference on Computer and Communications (ICCC), (Chengdu, China), December 2020.
  18. S. Maitra, V. P. Yanambaka, A. Abdelgawad, and K. Yelamarthi, “Securing a Vehicle Fleet Management Through Blockchain and Internet of Things,” in Proc. of IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), (Chennai, India), December 2020.
  19. N. D. Kamarudin, A. M. Azahari, M. H. M. Halip, S. B. Rahayu, and A. Ahmad, “A New Framework of Smart System For Inventory Management, Stock Item Locator And Navigation,” in Proc. of International Conference on Computer & Information Sciences (ICCOINS), (Kuching, Malaysia), July 2021.
  20. M. Sholihul Hadi, M. Samsul Huda, I. Ari Elbaith Zaeni, M. Alfian Mizar, and M. Irvan, “IoT Embedded System for Automatic Tissue Processor Machine,” in Proc. of International Conference on Vocational Education and Training (ICOVET), (Malang, Indonesia), September 2020.
  21. M. Poongothai, P. M. Subramanian, and A. Rajeswari, “Design and Implementation of IoT based Smart Laboratory,” in Proc. of International Conference on Industrial Engineering and Applications (ICIEA), (Singapore), April 2018.
  22. V. Yeri and D. Shubhangi, “IoT based Real Time Health Monitoring,” in Proc. of International Conference on Inventive Research in Computing Applications (ICIRCA), (Coimbatore, India), July 2020.
  23. K. Sangeethalakshmi, S. Preethi Angel, U. Preethi, S. Pavithra, and V. Shanmuga Priya, “Patient Health Monitoring System Using IoT,” Materials Today: Proceedings, vol. 80, pp. 2228–2231, 2023.
  24. F. B. Islam, C. Ifeanyi Nwakanma, D.-S. Kim, and J.-M. Lee, “IoT-Based HVAC Monitoring System for Smart Factory,” in Proc. of International Conference on Information and Communication Technology Convergence (ICTC), (Jeju, South Korea), October 2020.
  25. R. Seiger, F. Zerbato, A. Burattin, L. García-Bañuelos, and B. Weber, “Towards IoT-driven Process Event Log Generation for Conformance Checking in Smart Factories,” in Proc. of IEEE International Enterprise Distributed Object Computing Workshop (EDOCW), (Eindhoven, Netherlands), October 2020.
  26. M. Mircea, M. Stoica, and B. Ghilic-Micu, “Investigating the Impact of the Internet of Things in Higher Education Environment,” IEEE Access, vol. 9, pp. 33396–33409, February 2021.
  27. A. J. Majumder and J. A. Izaguirre, “A Smart IoT Security System for Smart-Home Using Motion Detection and Facial Recognition,” in Proc. of IEEE Computers, Software, and Applications Conference (COMPSAC), (Madrid, Spain), July 2020.
  28. H. Razalli, M. H. Alkawaz, and A. S. Suhemi, “Smart IOT Surveillance Multi-Camera Monitoring System,” in Proc. of IEEE Conference on Systems, Process and Control (ICSPC), (Melaka, Malaysia), December 2019.
  29. K. Haseeb, I. Ud Din, A. Almogren, and N. Islam, “An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture,” MDPI Sensors, vol. 20, April 2020.
  30. A. D. Boursianis, M. S. Papadopoulou, A. Gotsis, S. Wan, P. Sarigiannidis, S. Nikolaidis, and S. K. Goudos, “Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform,” IEEE Sensors Journal, vol. 21, pp. 17539–17547, August 2021.
  31. L. F. P. de Oliveira, L. T. Manera, and P. D. G. D. Luz, “Development of a Smart Traffic Light Control System With Real-Time Monitoring,” IEEE Internet of Things Journal, vol. 8, pp. 3384–3393, March 2021.
  32. S. R. Sriratnasari, G. Wang, E. R. Kaburuan, and R. Jayadi, “Integrated Smart Transportation using IoT at DKI Jakarta,” in Proc. of International Conference on Information Management and Technology (ICIMTech), (Jakarta/Bali, Indonesia), August 2019.
  33. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions,” IEEE Open Journal of the Communications Societ, vol. 1, pp. 957–975, July 2020.
  34. V. S. Mai, R. J. La, T. Zhang, and A. Battou, “End-to-End Quality-of-Service Assurance with Autonomous Systems: 5G/6G Case Study,” in Proc. of IEEE Consumer Communications & Networking Conference (CCNC), (Las Vegas, NV, USA), January 2022.
  35. A. Jagannath, J. Jagannath, and T. Melodia, “Redefining Wireless Communication for 6G: Signal Processing Meets Deep Learning with Deep Unfolding,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 6, pp. 528–536, 2021.
  36. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The Road Towards 6G: A Comprehensive Survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, February 2021.
  37. Y. Ahn, J. Kim, S. Kim, K. Shim, J. Kim, S. Kim, and B. Shim, “Toward Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-Aided Beamforming,” IEEE Wireless Communications, vol. 30, pp. 179–186, October 2023.
  38. E. Sopin, D. Moltchanov, A. Daraseliya, Y. Koucheryavy, and Y. Gaidamaka, “User Association and Multi-Connectivity Strategies in Joint Terahertz and Millimeter Wave 6G Systems,” IEEE Transactions on Vehicular Technology, vol. 71, pp. 12765–12781, December 2022.
  39. Q. Xue, C. Ji, S. Ma, J. Guo, Y. Xu, Q. Chen, and W. Zhang, “A Survey of Beam Management for mmWave and THz Communications Towards 6G,” IEEE Communications Surveys & Tutorials, 2024.
  40. A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, and T. Kürner, “Terahertz Communications for 6G and Beyond Wireless Networks: Challenges, Key Advancements, and Opportunities,” IEEE Network, vol. 37, pp. 162–169, May/June 2023.
  41. Z. Chen, C. Han, Y. Wu, L. Li, C. Huang, Z. Zhang, G. Wang, and W. Tong, “Terahertz Wireless Communications for 2030 and Beyond: A Cutting-Edge Frontier,” IEEE Communications Magazine, vol. 59, pp. 66–72, November 2021.
  42. S. K. Singh, R. Singh, and B. Kumbhani, “The Evolution of Radio Access Network Towards Open-RAN: Challenges and Opportunities,” in Proc. of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), (Seoul, South Korea), April 2020.
  43. S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN,” in Proc. of IEEE Conference on Computer Communications (INFOCOM), (London, United Kingdom), May 2022.
  44. M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, “Attack and Anomaly Detection in IoT Sensors in IoT Sites Using Machine Learning Approaches,” Internet of Things, vol. 7, p. 100059, September 2019.
  45. J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia, “Neural Networks for Signal Intelligence: Theory and Practice,,” in Machine Learning for Future Wireless Communications (F. Luo, ed.), Wiley - IEEE Series, John Wiley & Sons, Limited, 2020.
  46. J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia, “Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey,” Elsevier Ad Hoc Networks, vol. 93, p. 101913, 2019.
  47. A. Moubayed, A. Shami, and A. Al-Dulaimi, “On End-to-End Intelligent Automation of 6G Networks,” MDPI Future Internet, vol. 14, May 2022.
  48. H. R. Chi and A. Radwan, “Quality of Things’ Experience for 6G Artificial Intelligent Internet of Things with IEEE P2668,” IEEE Communications Magazine, vol. 61, pp. 58–64, June 2023.
  49. B. Sliwa, R. Adam, and C. Wietfeld, “Client-Based Intelligence for Resource Efficient Vehicular Big Data Transfer in Future 6G Networks,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 5332–5346, June 2021.
  50. Z. Hu, P. Zhang, C. Zhang, B. Zhuang, J. Zhang, S. Lin, and T. Sun, “Intelligent decision making framework for 6G networ,” China Communications, vol. 19, pp. 16–35, March 2022.
  51. B. Mao, F. Tang, Y. Kawamoto, and N. Kato, “AI Models for Green Communications Towards 6G,” IEEE Communications Surveys & Tutorials, vol. 24, pp. 210–247, Firstquarter 2022.
  52. Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “AI and 6G Security: Opportunities and Challenges,” in Proc. of Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), (Porto, Portugal), June 2021.
  53. H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu, “Artificial-Intelligence-Enabled Intelligent 6G Networks,” IEEE Network, vol. 34, pp. 272–280, November/December 2020.
  54. J. Jagannath, N. Polosky, D. O’Connor, L. Theagarajan, B. Sheaffer, S. Foulke, and P. Varshney, “Artificial Neural Network based Automatic Modulation Classifier for Software Defined Radios,” in Proc. of IEEE International Conference on Communications (ICC), (Kansas City, MO, USA), May 2018.
  55. M.-Y. Chen, M.-H. Fan, and L.-X. Huang, “AI-Based Vehicular Network toward 6G and IoT: Deep Learning Approaches,” ACM Transactions on Management Information Systems, vol. 13, pp. 1–12, March 2021.
  56. A. Jagannath and J. Jagannath, “Multi-task Learning Approach for Modulation and Wireless Signal Classification for 5G and Beyond: Edge Deployment via Model Compression,” Physical Communications (Elsevier), vol. 54, p. 101793, 2022.
  57. M. Hijji, R. Iqbal, A. Kumar Pandey, F. Doctor, C. Karyotis, W. Rajeh, A. Alshehri, and F. Aradah, “6G Connected Vehicle Framework to Support Intelligent Road Maintenance Using Deep Learning Data Fusion,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, pp. 7726–7735, July 2023.
  58. Z. Li, C.-X. Wang, C. Huang, J. Huang, J. Li, W. Zhou, and Y. Chen, “A GAN-GRU Based Space-Time Predictive Channel Model for 6G Wireless Communications,” IEEE Transactions on Vehicular Technology, pp. 1–16, March 2024.
  59. C. Huang, C.-X. Wang, Z. Li, Z. Qian, J. Li, and Y. Miao, “A Frequency Domain Predictive Channel Model for 6G Wireless MIMO Communications Based on Deep Learning,” IEEE Transactions on Communications, March 2024.
  60. H.-H. Chang, L. Liu, and Y. Yi, “Deep Echo State Q-Network (DEQN) and Its Application in Dynamic Spectrum Sharing for 5G and Beyond,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 929–939, March 2022.
  61. B. Picano and R. Fantacci, “A Channel-aware FL Approach for Virtual Machine Placement in 6G Edge Intelligent Ecosystems,” ACM Transactions on Internet of Things, vol. 4, pp. 1–20, May 2023.
  62. Y. Peng, T. Feng, C. Yang, C. Leng, L. Jiao, X. Zhu, L. Cao, and R. Li, “HMM-LSTM for Proactive Traffic Prediction in 6G Wireless Networks,” in Proc. of IEEE International Conference on Communication Technology (ICCT), (Tianjin, China), October 2021.
  63. P. M. Tshakwanda, S. T. Arzo, and M. Devetsikiotis, “Advancing 6G Network Performance: AI/ML Framework for Proactive Management and Dynamic Optimal Routing,” IEEE Open Journal of the Computer Society, pp. 1–12, May 2024.
  64. A. Jagannath, Z. Kane, and J. Jagannath, “RF Fingerprinting Needs Attention: Multi-task Approach for Real-World WiFi and Bluetooth,” in Proc. of IEEE Global Communications Conference (GLOBECOM), (Rio de Janeiro, Brazil), December 2022.
  65. A. Machumilane, P. Cassara, and A. Gotta, “Toward a Fully-Observable Markov Decision Process With Generative Models for Integrated 6G-Non-Terrestrial Networks,” IEEE Open Journal of the Communications Society, vol. 4, August 2023.
  66. Y. Lu, K. Ou, H. Chen, M. Wu, T. Yang, H. Tsai, and C. Chou, “On LSTM Autoencoder-Based Hybrid Precoding for Reconfigurable Intelligent Surface-Aided Multiuser Millimeter-Wave Massive MIMO 6G Systems,” in Proc. of IEEE Vehicular Technology Conference: (VTC2022-Spring), (Helsinki, Finland), June 2022.
  67. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.
  68. J. Jagannath, K. Hamedani, C. Farquhar, K. Ramezanpour, and A. Jagannath, “MR-iNet Gym: Framework for Edge Deployment of Deep Reinforcement Learning on Embedded Software Defined Radio,” in Proc. of ACM Workshop on Wireless Security and Machine Learning (WiseML), (San Antonio, Texas, USA), May 2022.
  69. Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama, E. Uchibe, and J. Morimoto, “Deep Learning, Reinforcement Learning, and World Models,” Neural Networks, vol. 152, pp. 267–275, 2022.
  70. S. Kafle, J. Jagannath, Z. Kane, N. Biswas, P. S. V. Kumar, and A. Jagannath, “Generalization of Deep Reinforcement Learning for Jammer-Resilient Frequency and Power Allocation,” IEEE Communications Letters, pp. 1–1, 2023.
  71. N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of Deep Reinforcement Learning in Communications and Networking: A Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.
  72. M. Gori, G. Monfardini, and F. Scarselli, “A New Model for Learning in Graph Domains,” in Proc. of IEEE International Joint Conference on Neural Networks (IJCNN), (Montreal, QC, Canada), July 2005.
  73. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph Neural Network Model,” IEEE Transactions on Neural Networks, vol. 20, pp. 61–80, January 2009.
  74. T. Perera, S. Atapattu, Y. Fang, P. Dharmawansa, and J. Evans, “Flex-Net: A Graph Neural Network Approach to Resource Management in Flexible Duplex Networks,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC), (Glasgow, United Kingdom), March 2023.
  75. T. Chen, X. Zhang, M. You, G. Zheng, and S. Lambotharan, “A GNN-Based Supervised Learning Framework for Resource Allocation in Wireless IoT Networks,” IEEE Internet of Things Journal, vol. 9, pp. 1712–1724, February 2022.
  76. M. Eisen and A. Ribeiro, “Large Scale Wireless Power Allocation with Graph Neural Networks,” in Proc. of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), (Cannes, France), August 2019.
  77. Z. Wang, M. Eisen, and A. Ribeiro, “Unsupervised Learning for Asynchronous Resource Allocation In Ad-Hoc Wireless Networks,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (Toronto, ON, Canada), June 2021.
  78. M. M. Rahman and M. S. Rahman, “Performance Analysis of Classical and Graph Neural Network-Based Power Allocation Schemes for Single-hop Ad hoc Wireless Networks,” in Proc. of IEEE International Conference on Electrical and Computer Engineering (ICECE), (Dhaka, Bangladesh), December 2022.
  79. Y. Zhang, A. Li, J. Li, D. Han, T. Li, R. Zhang, and Y. Zhang, “SpecKriging: GNN-Based Secure Cooperative Spectrum Sensing,” IEEE Transactions on Wireless Communications, vol. 21, pp. 9936–9946, November 2022.
  80. G. Srinath, B. Pardhasaradhi, P. Kumar H., and P. Srihari, “Tracking of Radar Targets With In-Band Wireless Communication Interference in RadComm Spectrum Sharing,” IEEE Access, vol. 10, pp. 31955–31969, March 2022.
  81. M. Lee, G. Yu, and H. Dai, “Privacy-Preserving Decentralized Inference with Graph Neural Networks in Wireless Networks,” IEEE Transactions on Wireless Communications, May 2023.
  82. T. Pamuklu, A. Syed, W. S. Kennedy, and M. Erol-Kantarci, “Heterogeneous GNN-RL Based Task Offloading for UAV-aided Smart Agriculture,” IEEE Networking Letters, June 2023.
  83. Y. Zhang, S. Xiu, Y. Cai, and P. Ren, “Scheduling of Graph Neural Network and Markov based UAV Mobile Edge Computing networks,” Physical Communication, vol. 60, October 2023.
  84. Y.-J. Chen, W. Chen, and M.-L. Ku, “Trajectory Design and Link Selection in UAV-Assisted Hybrid Satellite-Terrestrial Network,” IEEE Communications Letters, vol. 26, pp. 1643–1647, July 2022.
  85. K. Li, W. Ni, X. Yuan, A. Noor, and A. Jamalipour, “Deep-Graph-Based Reinforcement Learning for Joint Cruise Control and Task Offloading for Aerial Edge Internet of Things (EdgeIoT),” IEEE Internet of Things Journal, vol. 9, pp. 21676–21686, November 2022.
  86. Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive Graph Neural Networks for Spatiotemporal Kriging,” in Proc. of AAAI Conference on Artificial Intelligence, February 2020.
  87. L. Ruiz, F. Gama, and A. Ribeiro, “Graph Neural Networks: Architectures, Stability, and Transferability,” Proceedings of the IEEE, vol. 109, pp. 660–682, February 2021.
  88. R. Sato, “A Survey on The Expressive Power of Graph Neural Networks,” arXiv:2003.04078, October 2020.
  89. H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in Graph Neural Networks: A Taxonomic Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 5782–5799, May 2023.
  90. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph Neural Networks: A Review of Methods and Applications,” AI Open, vol. 1, pp. 57–81, April 2021.
  91. S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing Graph Neural Networks: A Survey from Algorithms to Accelerators,” ACM Computer Surveys, vol. 54, December 2022.
  92. S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph Neural Networks in Recommender Systems: A Survey,” ACM Computing Surveys, vol. 55, p. 1–37, December 2022.
  93. J. M. Thomas, A. Moallemy-Oureh, S. Beddar-Wiesing, and C. Holzhüter, “Graph Neural Networks Designed for Different Graph Types: A Survey ,” arXiv:2204.03080, April 2023.
  94. P. Tam, S. Ros, I. Song, S. Kang, and S. Kim, “A Survey of Intelligent End-to-End Networking Solutions: Integrating Graph Neural Networks and Deep Reinforcement Learning Approaches,” MDPI Electronics, vol. 13, March 2024.
  95. G. Dong, M. Tang, Z. Wang, J. Gao, S. Guo, L. Cai, R. Gutierrez, B. Campbel, L. E. Barnes, and M. Boukhechba, “Graph Neural Networks in IoT: A Survey,” ACM Transactions on Sensor Networks, vol. 19, p. 1–50, April 2023.
  96. R. Liu, P. Xing, Z. Deng, A. Li, C. Guan, and H. Yu, “Federated Graph Neural Networks: Overview, Techniques, and Challenges,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–17, February 2024.
  97. W. Jiang and J. Luo, “Graph Neural Network for Traffic Forecasting: A Survey,” Elsevier Expert Systems with Applications, vol. 207, November 2022.
  98. C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He, and Y. Li, “A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions,” ACM Transactions on Recommender Systems, vol. 1, p. 1–51, March 2023.
  99. T. Bilot, N. E. Madhoun, K. A. Agha, and A. Zouaoui, “Graph Neural Networks for Intrusion Detection: A Survey,” IEEE Access, vol. 11, pp. 49114–49139, 2023.
  100. L. Waikhom and R. Patgiri, “Graph Neural Networks: Methods, Applications, and Opportunities,” arXiv:2108.10733, September 2021.
  101. P. Tam, I. Song, S. Kang, S. Ros, and S. Kim, “Graph Neural Networks for Intelligent Modelling in Network Management and Orchestration: A Survey on Communications,” MDPI Electronics, vol. 11, October 2022.
  102. A. Gupta, P. Matta, and B. Pant, “Graph Neural Network: Current State of Art, Challenges and Applications,” Materials Today: Proceedings, vol. 46, no. 20, pp. 10927–10932, 2021.
  103. S. Rahmani, A. Baghbani, N. Bouguila, and Z. Patterson, “Graph Neural Networks for Intelligent Transportation Systems: A Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, pp. 8846–8885, August 2023.
  104. J. Suárez-Varela, P. Almasan, M. Ferriol-Galmés, K. Rusek, F. Geyer, X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio, and P. Barlet-Ros, “Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities,” IEEE Network, vol. 37, pp. 146–153, May/June 2023.
  105. S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan, “Challenges and Opportunities in Deep Reinforcement Learning With Graph Neural Networks: A Comprehensive Review of Algorithms and Applications,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, June 2023.
  106. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning System, vol. 32, pp. 4–24, January 2021.
  107. Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph Neural Networks: Taxonomy, Advances, and Trends,” ACM Transactions on Intelligent Systems and Technology, vol. 13, p. 1–54, January 2022.
  108. A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Liò, F. Scarselli, A. Passerini, et al., “Graph Neural Networks for Temporal Graphs: State of the Art, Open Challenges, and Opportunities,” Transaction on Machine Learning, 2023.
  109. S. He, S. Xiong, Y. Ou, J. Zhang, J. Wang, Y. Huang, and Y. Zhang, “An Overview on the Application of Graph Neural Networks in Wireless Networks,” IEEE Open Journal of the Communications Society, vol. 2, pp. 2547–2565, November 2021.
  110. Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical Graph Representation Learning with Differentiable Pooling,” Advances in neural information processing systems, vol. 31, 2018.
  111. K. K. Roy, A. Roy, A. M. Rahman, M. A. Amin, and A. A. Ali, “Structure-Aware Hierarchical Graph Pooling using Information Bottleneck,” in 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2021.
  112. F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral Clustering with Graph Neural Networks for Graph Pooling,” in Proc. of International conference on Machine Learning, pp. 874–883, PMLR, 2020.
  113. D. Bacciu and L. Di Sotto, “A Non-Negative Factorization Approach to Node Pooling in Graph Convolutional Neural Networks,” in Proc. of Advances in Artificial Intelligence: XVIIIth International Conference of the Italian Association for Artificial Intelligence, (Rende, Italy), pp. 294–306, Springer, November 2019.
  114. C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò, “Towards Sparse Hierarchical Graph Classifiers ,” arXiv:1811.01287, November 2018.
  115. J. Lee, I. Lee, and J. Kang, “Self-Attention Graph Pooling,” in Proc. of International conference on Machine Learning, pp. 3734–3743, PMLR, 2019.
  116. S. Zhang, H. Tong, and J. Xu, “Graph Convolutional Networks: A Comprehensive Review,” Springer Computational Social Networks, vol. 6, no. 11, 2019.
  117. X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling, and K. Xue, “Flow Topology-Based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks,” IEEE Transactions on Network and Service Management, vol. 20, pp. 684–696, March 2023.
  118. D. Janu, S. Kumar, and K. Singh, “A Graph Convolution Network Based Adaptive Cooperative Spectrum Sensing in Cognitive Radio Network,” IEEE Transactions on Vehicular Technology, vol. 72, pp. 2269–2279, February 2023.
  119. K. Nakashima, S. Kamiya, K. Ohtsu, K. Yamamoto, T. Nishio, and M. Morikura, “Deep Reinforcement Learning-Based Channel Allocation for Wireless LANs With Graph Convolutional Networks,” IEEE Access, vol. 8, pp. 31823–31834, February 2020.
  120. D. Zhao, H. Qin, B. Song, B. Han, X. Du, and M. Guizani, “A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network,” MDPI Sensors, vol. 20, September 2020.
  121. Y. Liu, Y. Liu, and C. Yang, “Modulation Recognition With Graph Convolutional Network,” IEEE Wireless Communications Letters, vol. 9, pp. 624–627, May 2020.
  122. L. Yang, Y. Wei, F. R. Yu, and Z. Han, “Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning,” IEEE Internet of Things Journal, vol. 9, pp. 23981–23994, December 2022.
  123. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention Networks,” arXiv:1710.10903, October 2017.
  124. K. Tekbiyik, G. K. Kurt, C. Huang, A. R. Ekti, and H. Yanikomeroglu, “Channel Estimation for Full-Duplex RIS-assisted HAPS Backhauling with Graph Attention Networks,” in Proc. of IEEE International Conference on Communications (ICC), (Montreal, QC, Canada), June 2021.
  125. C. Catal, H. Gunduz, and A. Ozcan, “Malware Detection Based on Graph Attention Networks for Intelligent Transportation Systems ,” MDPI Electronics, vol. 10, October 2021.
  126. L. Zhang, L. Tan, H. Shi, H. Sun, and W. Zhang, “Malicious Traffic Classification for IoT based on Graph Attention Network and Long Short-Term Memory Network,” in Proc. of Asia-Pacific Network Operations and Management Symposium (APNOMS), (Sejong, Republic of Korea), September 2023.
  127. Y. Shao, R. Li, Z. Zhao, and H. Zhang, “Graph Attention Network-based DRL for Network Slicing Management in Dense Cellular Networks,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC), (Nanjing, China), March 2021.
  128. X. Zhong and Y. He, “A Cybertwin-Driven Task Offloading Scheme Based on Deep Reinforcement Learning and Graph Attention Networks,” in Proc. of IEEE International Conference on Wireless Communications and Signal Processing (WCSP), (Changsha, China), October 2021.
  129. Y. Li, Y. Lu, R. Zhang, B. Ai, and Z. Zhong, “Deep Learning for Energy Efficient Beamforming in MU-MISO Networks: A GAT-Based Approach,” IEEE Wireless Communications Letters, vol. 12, pp. 1264–1268, July 2023.
  130. Z. Li, C.-X. Wang, C. Huang, L. Yu, J. Li, and Z. Qian, “A Novel Scatterer Density-Based Predictive Channel Model for 6G Wireless Communications,” in Proc. of IEEE Vehicular Technology Conference (VTC2023-Spring), (Florence, Italy), June 2023.
  131. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation Learning on Large Graphs,” in Proc. of International Conference on Neural Information Processing Systems (NeurIPS), (Long Beach, CA, USA), December 2017.
  132. W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-GraphSAGE: A Graph Neural Network based Intrusion Detection System for IoT,” in Proc. of IEEE/IFIP Network Operations and Management Symposium (NOMS), (Budapest, Hungary), April 2022.
  133. T. Tekdogan, “Analyzing the Traffic of MANETs using Graph Neural Networks,” in Proc. of IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), (Soyapango, El Salvador), December 2022.
  134. V. Ranasinghe, N. Rajatheva, and M. Latva-aho, “Graph Neural Network Based Access Point Selection for Cell-Free Massive MIMO Systems,” in Proc. of IEEE Global Communications Conference (GLOBECOM), (Madrid, Spain), December 2021.
  135. P. Lu, C. Jing, and X. Zhu, “GraphSAGE-Based Multi-Path Reliable Routing Algorithm for Wireless Mesh Networks,” MDPI Processes, vol. 11, April 2023.
  136. Y. Afoudi, M. Lazaar, and S. Hmaidi, “An Enhanced Recommender System based on Heterogeneous Graph Link Prediction,” Engineering Applications of Artificial Intelligence, September 2023.
  137. T. Liu, A. Jiang, J. Zhou, M. Li, and H. K. Kwan, “GraphSAGE-Based Dynamic Spatial–Temporal Graph Convolutional Network for Traffic Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, pp. 11210–11224, October 2023.
  138. M. Ye, Q. Zhang, X. Xue, Y. Wang, Q. Jiang, and H. Qiu, “A Novel Self-Supervised Learning-Based Anomalous Node Detection Method Based on an Autoencoder for Wireless Sensor Networks,” IEEE Systems Journal, 2024.
  139. D. Sun, S. Lu, and W. Wang, “CAAE: A Novel Wireless Spectrum Anomaly Detection Method with Multiple Scoring Criterion,” in Proc. of IEEE International Conference on Telecommunications (ICT), (London, United Kingdom), pp. 1–5, June 2021.
  140. Y. Zhang, Q. Zhang, Y. Zhang, and Z. Zhu, “VGAE-AMF: A Novel Topology Reconstruction Algorithm for Invulnerability of Ocean Wireless Sensor Networks Based on Graph Neural Network,” Marine Science and Engineering, vol. 11, April 2023.
  141. Z. Ezzati Khatab, A. Hajihoseini Gazestani, S. A. Ghorashi, and M. Ghavami, “A Fingerprint Technique for Indoor Localization Using Autoencoder Based Semi-Supervised Deep Extreme Learning Machine,” Signal Processing, April 2021.
  142. A. Venturi, M. Ferrari, M. Marchetti, and M. Colajanni, “ARGANIDS: a novel Network Intrusion Detection System based on adversarially Regularized Graph Autoencoder,” in Proc. of ACM/SIGAPP Symposium on Applied Computing, (Tallinn, Estonia), June 2023.
  143. X. Liu, T. Xing, X. Meng, and C. Q. Wu, “TA-GAE: Crowdsourcing Diverse Task Assignment Based On Graph Autoencoder in AIoT,” IEEE Internet of Things Journal, December 2023.
  144. “Graph Convolutional Networks Using Tensorflow.” https://github.com/tkipf/gcn.
  145. “Graph Convolutional Networks Using PyTorch.” https://github.com/tkipf/pygcn.
  146. T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” in Proc. of International Conference on Learning Representations (ICLR), (Toulon, France), April 2017.
  147. “GraphSAGE Using Tensorflow.” https://github.com/williamleif/GraphSAGE.
  148. “GraphSAGE Using PyTorch.” https://github.com/KimMeen/GraphSage.
  149. “Graph Auto-Encoders Using Tensorflow.” https://github.com/tkipf/gae.
  150. T. N. Kipf and M. Welling, “Variational Graph Auto-Encoders ,” arXiv:1611.07308, November 2016.
  151. “Graph Auto-Encoders Using PyTorch.” https://github.com/zfjsail/gae-pytorch.
  152. “Graph Isomorphism Networks Using Tensorflow.” https://github.com/russchua/Graph-Isomorphism-Networks.
  153. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks,” arXiv:1810.00826, Feb 2019.
  154. “Graph Isomorphism Networks Using PyTorch.” https://github.com/weihua916/powerful-gnns.
  155. “Graph Capsule Neural Network Using Tensorflow.” https://github.com/XinyiZ001/CapsGNN.
  156. Z. Xinyi and L. Chen, “Capsule Graph Neural Network,” in Proc. of International Conference on Learning Representations (ICLR), (New Orleans, Louisiana, United States), May 2019.
  157. “Graph Capsule Neural Network Using PyTorch.” https://github.com/benedekrozemberczki/CapsGNN.
  158. “Spatio-Temporal Graph Convolutional Networks Using Tensorflow.” https://github.com/VeritasYin/STGCN_IJCAI-18.
  159. B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting,” in Proc. of International Joint Conference on Artificial Intelligence (IJCAI), July 2018.
  160. “Spatio-Temporal Graph Convolutional Networks Using PyTorch.” https://github.com/hazdzz/STGCN.
  161. B. Weisfeiler and A. Leman, “The Reduction of a Graph to Canonical Form and the Algebra Which Appears Therein,” Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.
  162. B. Bertalanič and C. Fortuna, “Graph Isomorphism Networks for Wireless Link Layer Anomaly Classification,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC), (Glasgow, United Kingdom), March 2023.
  163. L. Meng and J. Zhang, “IsoNN: Isomorphic Neural Network for Graph Representation Learning and Classification,” arXiv:1907.09495, September 2019.
  164. N. B. Tran and D. T. Nguyen, “A Graph Isomorphism Based Authentication Protocol for Access Control in WLAN,” in Proc. of International Conference on Advanced Information Networking and Applications - Workshops (AINA)), (Gino-wan, Japan), March 2008.
  165. W. W. Lo, G. Kulatilleke, M. Sarhan, S. Layeghy, and M. Portmann, “XG-BoT: An Explainable Deep Graph Neural Network for Botnet Detection and Forensics,” Internet of Things, vol. 22, p. 100747, July 2023.
  166. R. Wang, Y. Zhang, L. Peng, G. Fortino, and P.-H. Ho, “Time-Varying-Aware Network Traffic Prediction Via Deep Learning in IIoT,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 8129–8137, March 2022.
  167. S. Verma and Z.-L. Zhang, “Graph Capsule Convolutional Neural Networks,” arXiv:1805.08090, August 2018.
  168. G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming Auto-encoders,” pp. 44–51, 2011.
  169. F. Chen, G. Yin, Y. Dong, G. Li, and W. Zhang, “KHGCN: Knowledge-Enhanced Recommendation with Hierarchical Graph Capsule Network,” MDPI Entropy, vol. 25, April 2023.
  170. R. Yang, W. Dai, C. Li, J. Zou, and H. Xiong, “NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, pp. 1025–1039, June 2024.
  171. X. Deng, H. Tang, X. Pei, D. Li, and K. Xue, “MDHE: A Malware Detection System Based on Trust Hybrid User-Edge Evaluation in IoT Network,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 5950–5963, September 2023.
  172. Y. Xue, G. Luo, Q. Yuan, J. Li, and F. Yang, “ST-Tracking: Spatial-temporal Graph Convolution Neural Network for Multi-object Tracking,” in Proc. of IEEE International Intelligent Transportation Systems Conference (ITSC)), (Indianapolis, IN, USA), September 2021.
  173. X. Wang, X. Wang, M. He, M. Zhang, and Z. Lu, “Spatial-Temporal Graph Model Based on Attention Mechanism for Anomalous IoT Intrusion Detection,” IEEE Transactions on Industrial Informatics, vol. 20, pp. 3497–3509, March 2024.
  174. A. A. M. Sharadqh, H. A. M. Hatamleh, A. M. A. Alnaser, S. S. Saloum, and T. A. Alawneh, “Hybrid Chain: Blockchain Enabled Framework for Bi-Level Intrusion Detection and Graph-Based Mitigation for Security Provisioning in Edge Assisted IoT Environment,” IEEE Access, vol. 11, pp. 27433–27449, March 2023.
  175. Z. Wang, J. Hu, G. Min, Z. Zhao, Z. Chang, and Z. Wang, “Spatial-Temporal Cellular Traffic Prediction for 5G and Beyond: A Graph Neural Networks-Based Approach,” IEEE Transactions on Industrial Informatics, vol. 19, pp. 5722–5731, April 2023.
  176. N. Zhao, A. Wu, Y. Pei, Y.-C. Liang, and D. Niyato, “Spatial-Temporal Aggregation Graph Convolution Network for Efficient Mobile Cellular Traffic Prediction,” IEEE Communications Letters, vol. 26, pp. 587–591, March 2022.
  177. E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-E: A Self-Supervised Network Intrusion Detection System Based on Graph Neural Networks,” Knowledge-Based Systems, vol. 258, December 2022.
  178. Y. Zhang, C. Yang, K. Huang, and Y. Li, “Intrusion Detection of Industrial Internet-of-Things Based on Reconstructed Graph Neural Networks,” IEEE Transactions on Network Science and Engineering, pp. 1–12, June 2022.
  179. D. Pujol-Perich, J. Suarez-Varela, A. Cabellos-Aparicio, and P. Barlet-Ros, “Unveiling the Potential of Graph Neural Networks for Robust Intrusion Detection,” ACM SIGMETRICS Performance Evaluation Review, vol. 49, p. 111–117, June 2022.
  180. F. Liu, Y. Wen, Y. Wu, S. Liang, X. Jiang, and D. Meng, “MLTracer: Malicious Logins Detection System via Graph Neural Network,” in Proc. of IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), (Guangzhou, China), December 2020.
  181. J. Busch, A. Kocheturov, V. Tresp, and T. Seidl, “NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification,” in Proc. of ACM International Conference on Scientific and Statistical Database Management (SSDBM), (Tampa, FL, USA), December 2021.
  182. Z. Ma, G. Mei, S. Cuomo, and F. Piccialli, “Heterogeneous Data Fusion Considering Spatial Correlations Using Graph Convolutional Networks and its Application in Air Quality Prediction,” Journal of King Saud University - Computer and Information Sciences, vol. 34, pp. 3433–3447, June 2022.
  183. Z. Yang, C. Pang, and X. Zeng, “Trajectory Forecasting Using Graph Convolutional Neural Networks Based on Prior Awareness and Information Fusion,” MDPI Journal of Geo-information, vol. 12, February 2023.
  184. S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y. Yao, “Modulation Classification Based on Signal Constellation Diagrams and Deep Learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 718–727, 2019.
  185. A. Jagannath and J. Jagannath, “Multi-task Learning Approach for Automatic Modulation and Wireless Signal Classification,” in Proc. of IEEE International Conference on Communications (ICC), (Montreal, Canada), June 2021.
  186. T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning Based Radio Signal Classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–179, 2018.
  187. A. Jagannath, J. Jagannath, Y. Wang, and T. Melodia, “Deep Neural Network Goes Lighter: A Case Study of Deep Compression Techniques on Automatic RF Modulation Recognition for Beyond 5G Networks,” in Big Data IV: Learning, Analytics, and Applications, vol. 12097, pp. 58–69, SPIE, 2022.
  188. N. Bitar, S. Muhammad, and H. H. Refai, “Wireless Technology Identification Using Deep Convolutional Neural Networks,” in Proc. of Intl Symp. on Personal, Indoor, and Mobile Radio Comms. (PIMRC), pp. 1–6, 2017.
  189. A. Jagannath, J. Jagannath, and P. S. P. V. Kumar, “A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges,” Computer Networks, vol. 219, p. 109455, 2022.
  190. A. Jagannath and J. Jagannath, “Embedding-Assisted Attentional Deep Learning for Real-World RF Fingerprinting of Bluetooth,” IEEE Transactions on Cognitive Communications and Networking, vol. 9, no. 4, pp. 940–949, 2023.
  191. Q. Xuan, J. Zhou, K. Qiu, Z. Chen, D. Xu, S. Zheng, and X. Yang, “AvgNet: Adaptive Visibility Graph Neural Network and Its Application in Modulation Classification,” IEEE Transactions on Network Science and Engineering, vol. 9, pp. 1516–1526, May-June 2022.
  192. K. Qiu, S. Zheng, L. Zhang, C. Lou, and X. Yang, “DeepSIG: A Hybrid Heterogeneous Deep Learning Framework for Radio Signal Classification,” IEEE Transactions on Wireless Communications, June 2023.
  193. B. Pang, Y. Fu, S. Ren, Y. Wang, Q. Liao, and Y. Jia, “CGNN: Traffic Classification with Graph Neural Network,” arXiv:2110.09726, October 2021.
  194. H. He and H. Jiang, “Deep Learning Based Energy Efficiency Optimization for Distributed Cooperative Spectrum Sensing,” IEEE Wireless Communications, vol. 26, pp. 32–39, June 2019.
  195. P. Soto, M. Camelo, K. Mets, F. Wilhelmi, D. Góez, L. Fletscher, N. Gaviria, P. Hellinckx, J. Botero, and S. Latré, “ATARI: A Graph Convolutional Neural Network Approach for Performance Prediction in Next-Generation WLANs,” MDPI Sensors, vol. 21, June 2021.
  196. H. Zhou, R. Kannan, A. Swami, and V. Prasanna, “HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN,” arXiv:2304.10013, April 2023.
  197. C. Rattaro, F. Larroca, and G. Capdehourat, “Predicting Wireless RSSI Using Machine Learning on Graphs,” in Proc. of IEEE URUCON, (Montevideo, Uruguay), pp. 372–376, November 2021.
  198. F. Sun, P. Wang, J. Zhao, N. Xu, J. Zeng, J. Tao, K. Song, C. Deng, J. C. Lui, and X. Guan, “Mobile Data Traffic Prediction by Exploiting Time-Evolving User Mobility Patterns,” IEEE Transactions on Mobile Computing, vol. 21, pp. 4456–4470, December 2022.
  199. Y. Sun, J. Zhang, Y. Zhang, L. Yu, Q. Wang, and G. Liu, “Environment Information-Based Channel Prediction Method Assisted by Graph Neural Network,” China Communications, vol. 19, pp. 1–15, November 2022.
  200. K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN,” IEEE Journal on Selected Areas in Communications, vol. 38, pp. 2260–2270, October 2020.
  201. P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-Aparicio, “Deep Reinforcement Learning Meets Graph Neural Networks: Exploring a Routing Optimization Use Case,” Computer Communications, vol. 196, pp. 184–194, December 2022.
  202. X. Xu, Y. Lu, and Q. Fu, “Applying Graph Neural Network in Deep Reinforcement Learning to Optimize Wireless Network Routing,” in Proc. of International Conference on Advanced Cloud and Big Data (CBD), (Xi’an, China), March 2022.
  203. A. Swaminathan, M. Chaba, D. K. Sharma, and U. Ghosh, “GraphNET: Graph Neural Networks for Routing Optimization in Software Defined Networks,” Computer Communications, vol. 178, pp. 169–182, October 2021.
  204. B. Yan, Q. Liu, J. Shen, and D. Liang, “Flowlet-Level Multipath Routing Based on Graph Neural Network in OpenFlow-based SDN,” Future Generation Computer Systems, vol. 134, pp. 140–153, September 2022.
  205. R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “CongestionNet: Routing Congestion Prediction Using Deep Graph Neural Networks,” in Proc. of IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), (Cuzco, Peru), October 2019.
  206. S. LaMar, J. J. Gosselin, I. Caceres, S. Kapple, and A. Jayasumana, “Congestion Aware Intent-Based Routing using Graph Neural Networks for Improved Quality of Experience in Heterogeneous Networks,” in Proc. of IEEE Military Communications Conference (MILCOM), (San Diego, CA, USA), December 2021.
  207. M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, K. Rusek, S. Xiao, X. Shi, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet-Fermi: Network Modeling With Graph Neural Networks,” IEEE/ACM Transactions on Networking, vol. 31, pp. 3080–3095, December 2023.
  208. A. Asheralieva and D. Niyato, “Secure and Efficient Coded Multi-Access Edge Computing With Generalized Graph Neural Networks,” IEEE Transactions on Mobile Computing, vol. 22, pp. 5504–5524, September 2023.
  209. L. Zeng, C. Yang, P. Huang, Z. Zhou, S. Yu, and X. Chen, “GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 720–739, March 2023.
  210. A. Zhou, J. Yang, Y. Qi, Y. Shi, T. Qiao, W. Zhao, and C. Hu, “Hardware-Aware Graph Neural Network Automated Design for Edge Computing Platforms,” arXiv:2303.10875, April 2023.
  211. Z. Sun, Y. Mo, and C. Yu, “Graph-Reinforcement-Learning-Based Task Offloading for Multiaccess Edge Computing,” IEEE Internet of Things Journal, vol. 10, pp. 3138–3150, February 2023.
  212. Y. Li, J. Li, Z. Lv, H. Li, Y. Wang, and Z. Xu, “GASTO: A Fast Adaptive Graph Learning Framework for Edge Computing Empowered Task Offloading,” IEEE Transactions on Network and Service Management, vol. 20, pp. 932–944, June 2023.
  213. M. Ma, “Multi-Task Offloading via Graph Neural Networks in Heterogeneous Multi-access Edge Computing,” arXiv:2306.10232, June 2023.
  214. J. Zhang, P. Yu, L. Feng, W. Li, M. Zhao, X. Yan, and J. Wu, “Fine-Grained Service Offloading in B5G/6G Collaborative Edge Computing Based on Graph Neural Networks,” in Proc. of IEEE International Conference on Communications (ICC), (Seoul, Republic of Korea), pp. 5226–5231, May 2022.
  215. S. Yang, L. Zhang, L. Cui, Q. Dong, W. Xiao, and C. Luo, “RLCS: Towards a Robust and Efficient Mobile Edge Computing Resource Scheduling and Task Offloading System Based on Graph Neural Network,” Computer Communications, vol. 203, pp. 38–50, June 2023.
  216. J. Jagannath, K. Ramezanpour, and A. Jagannath, “Digital Twin Virtualization with Machine Learning for IoT and Beyond 5G Networks: Research Directions for Security and Optimal Control,” in Proc. of ACM Workshop on Wireless Security and Machine Learning (WiseML), (San Antonio, Texas, USA), May 2022.
  217. A. Isah, H. Shin, I. Aliyu, R. M. Sulaiman, and J. Kim, “Graph Neural Network for Digital Twin Network: A Conceptual Framework,” in Proc. of IEEE International Conference on Artificial Intelligence in Information and Communication (ICAIIC), (Osaka, Japan), February 2024.
  218. J. Perdomo, M. Gutierrez-Estevez, C. Zhou, and J. F. Monserrat, “Towards a Wireless Network Digital Twin Model: A Heterogeneous Graph Neural Network Approach,” in Proc. of IEEE International Conference on Communications Workshops (ICC Workshops), (Rome, Italy), June 2023.
  219. H. Wang, Y. Wu, G. Min, and W. Miao, “A Graph Neural Network-Based Digital Twin for Network Slicing Management,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 1367–1376, February 2022.
  220. F. Naeem, G. Kaddoum, and M. Tariq, “Digital Twin-Empowered Network Slicing in B5G Networks: Experience-Driven Approach,” in Proc. of IEEE Globecom Workshops (GC Wkshps), (Madrid, Spain), December 2023.
  221. M. Ferriol-Galmés, J. Suárez-Varela, J. Paillissé, X. Shi, S. Xiao, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “Building a Digital Twin for Network Optimization Using Graph Neural Networks,” Elsevier Computer Networks, vol. 217, p. 109329, November 2022.
  222. M. Ferriol-Galmés, X. Cheng, X. Shi, S. Xiao, P. Barlet-Ros, and A. Cabellos-Aparicio, “FlowDT: A Flow-Aware Digital Twin for Computer Networks,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (Singapore, Singapore), May 2022.
  223. P. Yu, J. Zhang, H. Fang, W. Li, L. Feng, F. Zhou, P. Xiao, and S. Guo, “Digital Twin Driven Service Self-Healing With Graph Neural Networks in 6G Edge Networks,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 3607–3623, November 2023.
  224. H. Zhang, X. Ma, X. Liu, L. Li, and K. Sun, “GNN-Based Power Allocation and User Association in Digital Twin Network for the Terahertz Band,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 3111–3121, October 2023.
  225. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The Internet Topology Zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, pp. 1765–1775, October 2011.
  226. Cham: Springer International Publishing, 2021.
  227. S. Krishna Moorthy and Z. Guan, “FlyTera: Echo State Learning for Joint Access and Flight Control in THz-enabled Drone Networks,” in Proc. of IEEE International Conference on Sensing, Communication and Networking (SECON), (Como, Italy), June 2020.
  228. N. Polosky, T. Gwin, S. Furman, P. Barhanpurkar, and J. Jagannath, “Machine Learning Subsystem for Autonomous Collision Avoidance on a small UAS with Embedded GPU,” in Proc. of IEEE Consumer Communications & Networking Conference (CCNC), (Las Vegas, NV, USA), 2021.
  229. S. Krishna Moorthy, M. McManus, and Z. Guan, “ESN Reinforcement Learning for Spectrum and Flight Control in THz-Enabled Drone Networks,” IEEE/ACM Transactions on Networking, vol. 30, pp. 782–795, April 2022.
  230. J. Hu, S. Krishna Moorthy, A. Harindranath, J. Zhang, Z. Zhao, N. Mastronarde, E. S. Bentley, S. Pudlewski, and Z. Guan, “A Mobility-Resilient Spectrum Sharing Framework for Operating Wireless UAVs in the 6 GHz Band,” IEEE/ACM Transactions on Networking, vol. 31, pp. 3128 – 3142, April 2023.
  231. J. Hu, S. Krishna Moorthy, A. Harindranath, Z. Guan, N. Mastronarde, E. S. Bentley, and S. Pudlewski, “SwarmShare: Mobility-Resilient Spectrum Sharing for Swarm UAV Networking in the 6 GHz Band,” in Proc. of IEEE International Conference on Sensing, Communication and Networking (SECON), (Virtual Conference), July 2021.
  232. S. Krishna Moorthy, N. Mastronarde, S. Pudlewski, E. S. Bentley, and Z. Guan, “Swarm UAV Networking With Collaborative Beamforming and Automated ESN Learning in the Presence of Unknown Blockages,” Computer Networks (Elsevier), vol. 231, 2023.
  233. S. Krishna Moorthy, Z. Guan, S. Pudlewski, and E. S. Bentley, “FlyBeam: Echo State Learning for Joint Flight and Beamforming Control in Wireless UAV Networks,” in Proc. of IEEE International Conference on Communications (ICC), (Virtual/Montreal, Canada), June 2021.
  234. S. Krishna Moorthy and Z. Guan, “LeTera: Stochastic Beam Control Through ESN Learning in Terahertz-Band Wireless UAV Networks,” in Proc. of IEEE INFOCOM Workshop on Wireless Communications and Networking in Extreme Environments (WCNEE), (Toronto, Canada), July 2020.
  235. S. Krishna Moorthy and Z. Guan, “Beam Learning in MmWave/THz-band Drone Networks Under In-Flight Mobility Uncertainties,” IEEE Transactions on Mobile Computing, vol. 21, pp. 1945–1957, June 2022.
  236. Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, “Federated Learning in the Sky: Aerial-Ground Air Quality Sensing Framework With UAV Swarms,” IEEE Internet of Things Journal, vol. 8, pp. 9827–9837, June 2021.
  237. X. Zhang, H. Zhao, J. Wei, C. Yan, J. Xiong, and X. Liu, “Cooperative Trajectory Design of Multiple UAV Base Stations With Heterogeneous Graph Neural Networks,” IEEE Transactions on Wireless Communications, vol. 22, pp. 1495–1509, March 2023.
  238. Y. An, A. Liu, H. Liu, and L. Geng, “Multidimensional Trajectory Prediction of UAV Swarms Based on Dynamic Graph Neural Network,” IEEE Access, vol. 12, pp. 57033–57042, April 2024.
  239. Z. Mou, F. Gao, J. Liu, and Q. Wu, “Resilient UAV Swarm Communications With Graph Convolutional Neural Network,” IEEE Journal on Selected Areas in Communications, vol. 40, pp. 393–411, January 2022.
  240. X. Wang, L. Fu, N. Cheng, R. Sun, T. Luan, W. Quan, and K. Aldubaikhy, “Joint Flying Relay Location and Routing Optimization for 6G UAV–IoT Networks: A Graph Neural Network-Based Approach,” MDPI Remote Sensing, vol. 14, September 2022.
  241. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861, April 2017.
  242. K. Nie, K. Zeng, and Q. Meng, “Knowledge Reasoning Method for Military Decision Support Knowledge Graph Mixing Rule and Graph Neural Networks Learning Together,” in Proc. of IEEE Chinese Automation Congress (CAC), (Shanghai, China), pp. 4013–4018, November 2020.
  243. J. Xu and Z. He, “A GNN-based Mission Planning Approach Coupled with Environment for Multiple Unmanned Ground Vehicles,” in Proc. of International Conference on Software Engineering and Computer Science (CSECS), (Chengdu, China), December 2023.
  244. E. Sant’Ana da Silva, H. Pedrini, and A. L. d. Santos, “Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems,” IEEE Transactions on Network and Service Management, vol. 20, pp. 4085–4096, December 2023.
  245. Q. Liu, Z. Li, X. Li, J. Wu, and S. Yuan, “Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments ,” arXiv:2201.12776, January 2022.
  246. F. Yang, X. Li, Q. Liu, Z. Li, and X. Gao, “Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving,” MDPI Sensors, vol. 22, June 2022.
  247. L. Liu, N. Gurney, K. McCullough, and V. Ustun, “Graph Neural Network Based Behavior Prediction to Support Multi-Agent Reinforcement Learning in Military Training Simulations,” in Proc. of Winter Simulation Conference (WSC), (Phoenix, AZ, USA), December 2021.
  248. R. Tang, X. Ning, Z. Wang, J. Fan, and S. Ma, “Dynamic Scheduling for Multi-Level Air Defense with Contingency Situations based on Human-Intelligence Collaboration,” Elsevier Engineering Applications of Artificial Intelligence, vol. 132, p. 107893, May 2024.
  249. B. Li, Z. Li, J. Chen, Y. Yan, Y. Lv, and W. Du, “MAST-GNN: A Multimodal Adaptive Spatio-Temporal Graph Neural Network for Airspace Complexity Prediction,” Elsevier Transportation Research Part C: Emerging Technologies, vol. 160, p. 104521, March 2024.
  250. A. A. Okine, N. Adam, F. Naeem, and G. Kaddoum, “Multi-Agent Deep Reinforcement Learning for Packet Routing in Tactical Mobile Sensor Networks,” IEEE Transactions on Network and Service Management, vol. 21, pp. 2155–2169, April 2024.
  251. S. Wijeratne, B. Zhang, R. Kannan, V. Prasanna, and C. Busart, “PAHD: Perception-Action-Based Human Decision Making Using Explainable Graph Neural Networks on SAR Images,” in Proc. of SPIE Defense + Commercial Sensing Conference on Automatic Target Recognition, (Orlando, Florida, United States), April 2023.
  252. T. Ye, R. Kannan, V. Prasanna, and C. Busart, “Adversarial Attack on GNN-based SAR Image Classifier,” in Proc. of SPIE Defense + Commercial Sensing Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, (Orlando, Florida, United States), April 2023.
  253. H. Zhu, N. Lin, H. Leung, R. Leung, and S. Theodoidis, “Target Classification From SAR Imagery Based on the Pixel Grayscale Decline by Graph Convolutional Neural Network,” IEEE Sensors Letters, vol. 4, pp. 1–4, June 2020.
  254. S. Xu, S. Geng, P. Xu, Z. Chen, and H. Gao, “Cognitive Fusion of Graph Neural Network and Convolutional Neural Network for Enhanced Hyperspectral Target Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–15, April 2024.
  255. X. Chen, M. Zhang, and Y. Liu, “Target Detection With Spectral Graph Contrast Clustering Assignment and Spectral Graph Transformer in Hyperspectral Imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–16, April 2024.
  256. X. Yang, S. Li, B. Cai, Z. Meng, and J. Yan, “MF-GCN: Motion Flow-Based Graph Network Learning Dynamics for Aerial IR Target Recognition,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, pp. 6346–6359, October 2023.
  257. Z. Chen, G. Wu, H. Gao, Y. Ding, D. Hong, and B. Zhang, “Local Aggregation and Global Attention Network for Hyperspectral Image Classification with Spectral-Induced Aligned Superpixel Segmentation,” Elsevier Expert Systems with Applications, vol. 232, December 2023.
  258. F. Lezama, G. G. González, F. Larroca, and G. Capdehourat, “Indoor Localization using Graph Neural Networks,” in Proc. of IEEE URUCON, (Montevideo, Uruguay), November 2021.
  259. M. Zhang, Z. Fan, R. Shibasaki, and X. Song, “Domain Adversarial Graph Convolutional Network Based on RSSI and Crowdsensing for Indoor Localization,” IEEE Internet of Things Journal, vol. 10, pp. 13662–13672, August 2023.
  260. W. Yan, D. Jin, Z. Lin, and F. Yin, “Graph Neural Network for Large-Scale Network Localization,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (Toronto, ON, Canada), June 2021.
  261. O. Boyaci, M. R. Narimani, K. R. Davis, M. Ismail, T. J. Overbye, and E. Serpedin, “Joint Detection and Localization of Stealth False Data Injection Attacks in Smart Grids Using Graph Neural Networks,” IEEE Transactions on Smart Grid, vol. 13, pp. 807–819, January 2022.
  262. D. A. van Dyk and X.-L. Meng, “The Art of Data Augmentation,” Journal of Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.
  263. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” Advances in Neural Information Processing Systems, vol. 27, p. 2672–2680, 2014.
  264. R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Generating Explanations for Graph Neural Networks,” arXiv:1903.03894, November 2019.
  265. C. He, K. Balasubramanian, E. Ceyani, C. Yang, H. Xie, L. Sun, L. He, L. Yang, P. S. Yu, Y. Rong, P. Zhao, J. Huang, M. Annavaram, and S. Avestimehr, “FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks,” arXiv:2104.07145, September 2021.
  266. Z. Shen, Y. Zhang, L. Wei, H. Zhao, and Q. Yao, “Automated Machine Learning: From Principles to Practices ,” arXiv:1810.13306, February 2024.
  267. K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-GNN: Neural Architecture Search of Graph Neural Networks ,” arXiv:2010.07474, September 2019.
  268. C. Wang, K. Zhang, H. Wang, and B. Chen, “Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search Based on Reinforcement Learning and Existing Research Results ,” arXiv:2010.07474, October 2020.
  269. L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga, P. Patel, V. Petkov, M. Seltser, F. Restuccia, A. Gosain, K. R. Chowdhury, S. Basagni, and T. Melodia, “Colosseum: Large-Scale Wireless Experimentation Through Hardware-in-the-Loop Network Emulation,” in Proc. of IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), (Virtual Conference), December 2021.
  270. J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. Johnson, S. K. Kasera, E. Lewis, D. Maas, A. Orange, N. Patwari, D. Reading, R. Ricci, D. Schurig, L. B. Stoller, J. Van der Merwe, K. Webb, and G. Wong, “POWDER: Platform for Open Wireless Data-Driven Experimental Research,” in Proc. of ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH), (London, United Kingdom), Sept. 2020.
  271. D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari, P. Skrimponis, and C. Gutterman, “Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Advanced Wireless,” in Proc. of ACM International Conference on Mobile Computing and Networking (MobiCom), (London, United Kingdom), Sept. 2020.
  272. H. Zhang, Y. Guan, A. Kamal, D. Qiao, M. Zheng, A. Arora, O. Boyraz, B. Cox, T. Daniels, M. Darr, D. Jacobson, A. Khokhar, S. Kim, J. Koltes, J. Liu, M. Luby, L. Nadolny, J. Peschel, P. Schnable, A. Sharma, A. Somani, and L. Tang, “ARA: A Wireless Living Lab Vision for Smart and Connected Rural Communities,” in Proc. of ACM Workshop on Wireless Network Testbeds, Experimental Evaluation & CHaracterization (WiNTECH), (New Orleans, LA, USA), January 2022.
  273. M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, and B. Floyd, “AERPAW Emulation Overview,” in Proc. of ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH), (London, United Kingdom), Sept. 2020.
  274. L. Bertizzolo, L. Bonati, E. Demirors, and T. Melodia, “Arena: A 64-Antenna SDR-Based Ceiling Grid Testbed for Sub-6 GHz Radio Spectrum Research,” in Proc. of the ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, (Los Cabos, Mexico), Oct. 2019.
  275. S. K. Moorthy, C. Lu, Z. Guan, N. Mastronarde, G. Sklivanitis, D. Pados, E. S. Bentley, and M. Medley, “CloudRAFT: A Cloud-based Framework for Remote Experimentation for Mobile Networks,” in Proc. of IEEE International Workshop on Communication and Networking for Swarms Robotics (RoboCom), (Virtual Conference), January 2022.
  276. M. McManus, T. Rinchen, S. M. Suhail, S. Santhinivas, A. Dey, S. Pagidimarri, Y. Cui, J. Hu, J. Z. Zhang, X. L. Wang, M. Ji, N. Mastronarde, and Z. Guan, “Demo Abstract: UnionLabs: AWS-based Remote Access and Sharing of NextG and IoT Testbeds,” in Proc. of IEEE International Conference on Computer Communications (INFOCOM), (Vancouver, Canada), May 2024.
  277. X. Lin, N. B. Shroff, and R. Srikant, “A Tutorial on Cross-Layer Optimization in Wireless Networks,” IEEE Journal on Selected areas in Communications, vol. 24, no. 8, pp. 1452–1463, 2006.
  278. J. Jagannath, A. Jagannath, J. Henney, T. Gwin, Z. Kane, N. Biswas, and A. Drozd, “Design of Fieldable Cross-Layer Optimized Network using Embedded Software Defined Radios: Survey and Novel Architecture with Field Trials,” Computer Networks (Elsevier), vol. 209, p. 108917, 2022.
  279. T. Zhu, X. Chen, L. Chen, W. Wang, and G. Wei, “GCLR: GNN-Based Cross Layer Optimization for Multipath TCP by Routing,” IEEE Access, vol. 8, pp. 17060–17070, 2020.
  280. J. Jagannath, S. Furman, T. Melodia, and A. Drozd, “Design and Experimental Evaluation of a Cross-Layer Deadline-Based Joint Routing and Spectrum Allocation Algorithm,” IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1774–1788, 2019.
  281. L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “Cross-layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 59, pp. 1969–1979, May 2010.
  282. J. Jagannath, T. Melodia, and A. Drozd, “DRS: Distributed Deadline-Based Joint Routing and Spectrum Allocation for Tactical Ad-hoc Networks,” in Proc. of IEEE Global Communications Conference (GLOBECOM), (Washington D.C., USA), December 2016.
  283. J. Jagannath, A. Jagannath, J. Henney, N. Biswas, T. Gwin, Z. Kane, and A. Drozd, “Fieldable Cross-Layer Optimized Embedded Software Defined Radio is Finally Here!,” in Proc. of IEEE Conf. on Military Communications (MILCOM), (San Diego, CA, USA), November 2021.
  284. S. Colonnese, F. Cuomo, T. Melodia, and I. Rubin, “A Cross-Layer Bandwidth Allocation Scheme for HTTP-Based Video Streaming in LTE Cellular Networks,” IEEE Communications Letters, vol. 21, no. 2, pp. 386–389, 2017.
  285. J. Jagannath and T. Melodia, “VL-ROUTE: A Cross-Layer Routing Protocol for Visible Light Ad Hoc Network,” in Proc. of IEEE Symp. on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM), (Washington D.C., USA), June 2019.
  286. B. Mao, J. Liu, Y. Wu, and N. Kato, “Security and Privacy on 6G Network Edge: A Survey,” IEEE Communications Surveys & Tutorials, 2023.
  287. K. Ramezanpour, J. Jagannath, and A. Jagannath, “Security and Privacy Vulnerabilities of 5G/6G and WiFi 6: Survey and Research Directions from a Coexistence Perspective,” Computer Networks, vol. 221, p. 109515, 2023.
  288. S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,” Special publication, National Institute of Standards and Technology (NIST), August 2020.
  289. M. Hussain, S. Pal, Z. Jadidi, E. Foo, and S. Kanhere, “Federated Zero Trust Architecture using Artificial Intelligence,” IEEE Wireless Communications, vol. 31, pp. 30–35, April 2024.
  290. E. S. Hosney, I. T. A. Halim, and A. H. Yousef, “An Artificial Intelligence Approach for Deploying Zero Trust Architecture (ZTA),” in Proc. of International Conference on Computing and Informatics (ICCI), (New Cairo, Cairo, Egypt), March 2022.
  291. K. Ramezanpour and J. Jagannath, “Intelligent Zero Trust Architecture for 5G/6G Networks: Principles, Challenges, and the Role of Machine Learning in the context of O-RAN,” Elsevier Computer Networks, July 2022.
  292. H. Sedjelmaci, K. Tourki, and N. Ansari, “Enabling 6G Security: The Synergy of Zero Trust Architecture and Artificial Intelligence,” IEEE Network, October 2023.
  293. M. A. Enright, E. Hammad, and A. Dutta, “A Learning-Based Zero-Trust Architecture for 6G and Future Networks,” in Proc. of IEEE Future Networks World Forum (FNWF), (Montreal, QC, Canada), October 2022.
  294. C. Huo, D. He, C. Liang, D. Jin, T. Qiu, and L. Wu, “TrustGNN: Graph Neural Network-Based Trust Evaluation via Learnable Propagative and Composable Nature,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13, May 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.