Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accretion Structures around Kerr Black Holes in a Swirling Background (2405.16758v2)

Published 27 May 2024 in gr-qc

Abstract: We investigate thick accretion structures around Kerr black holes in a swirling background. This stationary and axisymmetric spacetime is composed of a rotating black hole, which is immersed in a rotating background. The swirling background is characterized by an odd $\mathcal{Z}_2$ symmetry, where the northern and southern hemispheres are rotating in opposite directions. The presence of the Kerr rotation leads to the emergence of complex spin-spin interactions with the background rotation, which heavily influence the spacetime properties. In order to study this influence, we analyze circular orbits and geometrically thick disks for different spacetime solutions, that are classified by their Kerr parameter $a$ and the swirling parameter $j$. We identify stabilizing effects on prograde circular orbits and destabilizing effects on retrograde circular orbits, which originate from the spin-spin interaction and depend mainly on the Kerr rotation. Furthermore, we discovered the emergence of static orbits, which appear due to the background rotation. The symmetry breaking with regard to the equatorial plane causes a concave (convex) distribution of prograde (retrograde) circular orbits and accordingly, bowl-like deformations of the accretion disk structures. The parameter space for disk solutions gets heavily downsized by the appearance of an outer marginally stable orbit. Due to the possibility of an outer and inner disk cusp, different types of disk solutions are possible. We classify the different types of disk solutions, which differ from each other by the properties of their cusps. Four different scenarios can be identified in which different accretion dynamics could arise.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. A. Abramowicz, The Relativistic von Zeipel’s Theorem, Acta Astronomica 21, 81 (1971).
  2. M. A. Abramowicz, Theory of Level Surfaces Inside Relativistic: Rotating Stars. II., Acta Astronomica 24, 45 (1974).
  3. L. G. Fishbone and V. Moncrief, Relativistic fluid disks in orbit around Kerr black holes., Astrophys. J.  207, 962 (1976).
  4. M. Kozlowski, M. Jaroszynski, and M. A. Abramowicz, The analytic theory of fluid disks orbiting the Kerr black hole., Astronomy and Astrophysics 63, 209 (1978).
  5. M. A. Abramowicz, M. Calvani, and L. Nobili, Thick accretion disks with super-Eddington luminosities, Astrophys. J.  242, 772 (1980).
  6. M. Jaroszynski, M. A. Abramowicz, and B. Paczynski, Supercritical accretion disks around black holes, Acta Astronomica 30, 1 (1980).
  7. B. Paczyńsky and P. J. Wiita, Thick Accretion Disks and Supercritical Luminosities, Astronomy and Astrophysics 88, 23 (1980).
  8. B. Paczynski and G. Bisnovatyi-Kogan, A Model of a Thin Accretion Disk around a Black Hole, Acta Astronomica 31, 283 (1981).
  9. B. Paczynski and M. A. Abramowicz, A model of a thick disk with equatorial accretion, Astrophys. J.  253, 897 (1982).
  10. I. V. Igumenshchev, R. Narayan, and M. A. Abramowicz, Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows, Astrophys. J.  592, 1042 (2003), arXiv:astro-ph/0301402 [astro-ph] .
  11. J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford, General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes, Monthly Notices of the Royal Astronomical Society 423, 3083 (2012), https://academic.oup.com/mnras/article-pdf/423/4/3083/17334055/mnras0423-3083.pdf .
  12. L. Rezzolla, O. Zanotti, and J. A. Font, Dynamics of thick discs around Schwarzschild-de Sitter black holes, Astronomy and Astrophysics 412, 603 (2003), arXiv:gr-qc/0310045 [gr-qc] .
  13. Z. Stuchlík, P. Slaný, and J. Kovář, Pseudo-newtonian and general relativistic barotropic tori in schwarzschild–de sitter spacetimes, Classical and Quantum Gravity 26, 215013 (2009).
  14. S. Chakraborty, Equilibrium configuration of perfect fluid orbiting around black holes in some classes of alternative gravity theories, Classical and Quantum Gravity 32, 075007 (2015).
  15. P. I. Jefremov, Circular motion and Polish Doughnuts in NUT spacetime, in New Frontiers in Black Hole Astrophysics, Vol. 324, edited by A. Gomboc (2017) pp. 353–354.
  16. M. C. Teodoro, L. G. Collodel, and J. Kunz, Retrograde polish doughnuts around boson stars, Journal of Cosmology and Astroparticle Physics 2021 (03), 063.
  17. X. Zhou, S. Chen, and J. Jing, Geometrically thick equilibrium tori around a dyonic black hole with quasi-topological electromagnetism, European Physical Journal C 84, 130 (2024), arXiv:2307.01996 [gr-qc] .
  18. C. Chen, Q. Pan, and J. Jing, Geometrically thick equilibrium tori around a schwarzschild black hole in swirling universes (2024), arXiv:2402.02789 [gr-qc] .
  19. F. J. Ernst, New Formulation of the Axially Symmetric Gravitational Field Problem. II, Phys. Rev. 168, 1415 (1968a).
  20. F. J. Ernst, New formulation of the axially symmetric gravitational field problem, Phys. Rev. 167, 1175 (1968b).
  21. G. W. Gibbons, A. H. Mujtaba, and C. N. Pope, Ergoregions in Magnetised Black Hole Spacetimes, Class. Quant. Grav. 30, 125008 (2013), arXiv:1301.3927 [gr-qc] .
  22. M. Astorino, R. Martelli, and A. Viganò, Black holes in a swirling universe, Phys. Rev. D 106, 064014 (2022), arXiv:2205.13548 [gr-qc] .
  23. F. J. Ernst, Black holes in a magnetic universe, J. Math. Phys. 17, 54 (1976).
  24. R. Capobianco, B. Hartmann, and J. Kunz, Geodesic Motion in a Swirling Universe: The complete set of solutions,   (2023), arXiv:2312.17347 [gr-qc] .
  25. L. Smarr, Surface Geometry of Charged Rotating Black Holes, Phys. Rev. D 7, 289 (1973).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.