A probabilistic approach to continuous differentiability of optimal stopping boundaries (2405.16636v1)
Abstract: We obtain the first probabilistic proof of continuous differentiability of time-dependent optimal boundaries in optimal stopping problems. The underlying stochastic dynamics is a one-dimensional, time-inhomogeneous diffusion. The gain function is also time-inhomogeneous and not necessarily smooth. Moreover, we include state-dependent discount rate and the time-horizon can be either finite or infinite. Our arguments of proof are of a local nature that allows us to obtain the result under more general conditions than those used in the PDE literature. As a byproduct of our main result we also obtain the first probabilistic proof of the link between the value function of an optimal stopping problem and the solution of the Stefan's problem.
- Critical stock price near expiration. Math. Finance, 5(2):77–95, 1995.
- A. Bensoussan and J.-L. Lions. Applications of variational inequalities in stochastic control. Elsevier, 2011.
- J. R. Cannon. The one-dimensional heat equation. Number 23. Cambridge University Press, 1984.
- On the infinite differentiability of the free boundary in a Stefan problem. SIAM J. Math. Anal. Appl., 22:385–397, 1967.
- X. Chen and J. Chadam. A mathematical analysis of the optimal exercise boundary for American put options. SIAM J. Math. Anal., 38(5):1613–1641, 2007.
- T. De Angelis. A note on the continuity of free-boundaries in finite-horizon optimal stopping problems for one-dimensional diffusions. SIAM J. Control Optim., 53(1):167–184, 2015.
- T. De Angelis. Stopping spikes, continuation bays and other features of optimal stopping with finite-time horizon. Electron. J. Probab., 27:1–41, 2022.
- T. De Angelis and G. Peskir. Global C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT regularity of the value function in optimal stopping problems. Ann. Appl. Probab., 30(3):1007–1031, 2020.
- T. De Angelis and G. Stabile. On Lipschitz continuous optimal stopping boundaries. SIAM J. Control Optim., 57(1):402–436, 2019.
- G. Duvaut. Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré). C. R. Acad. Sc. Paris, Series A, 276:1461–1463, 1973.
- N. El Karoui. Les aspects probabilistes du contrôle stochastique. In École d’été de Probabilités de Saint-Flour IX-1979, pages 73–238. Springer, 1981.
- American options on assets with dividends near expiry. Math. Finance, 12(3):219–237, 2002.
- A. Friedman. Parabolic variational inequalities in one space dimension and smoothness of the free boundary. J. Functional Anal., 18(2):151–176, 1975.
- A. Friedman. Stochastic differential equations and applications, volume 1,2. Dover Publications Inc., Mineola, N.Y., 2006.
- A. Friedman. Partial differential equations of parabolic type. Courier Dover Publications, 2008.
- M. Gevrey. Sur la nature analytique des solutions des équations aux dérivées partielles. premier mémoire. In Ann. Sci. Ecole Normale Superieure, volume 35, pages 129–190, 1918.
- S. D. Jacka. Optimal stopping and the American put. Math. Finance, 1(2):1–14, 1991.
- L.-S. Jiang. Free boundary problems in China. In Numerical Treatment of Free Boundary Value Problems: Workshop on Numerical Treatment of Free Boundary Value Problems Oberwolfach, November 16–22, 1980, pages 176–186. Springer, 1982.
- I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, Second Edition. Springer, 1998.
- I. Karatzas and S. E. Shreve. Methods of mathematical finance, volume 39. Springer, 1998.
- D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their applications. SIAM, 2000.
- D. B. Kotlow. A free boundary problem connected with the optimal stopping problem for diffusion processes. Trans. Am. Math. Soc., 184:457–478, 1973.
- D. Lamberton and B. Lapeyre. Introduction to stochastic calculus applied to finance. CRC press, 2011.
- D. Lamberton and S. Villeneuve. Critical price near maturity for an American option on a dividend-paying stock. Ann. Appl. Probab., 13(2):800–815, 2003.
- T. R. McConnell. The two-sided Stefan problem with a spatially dependent latent heat. Trans. Amer. Math. Soc., 326(2):669–699, 1991.
- H. P. McKean Jr. A free boundary problem for the heat equation arising from a problem in mathematical economics. Indust. Manag. Rev., 6:32–39, 1965.
- A. Pascucci. PDE and martingale methods in option pricing. Springer Science & Business Media, 2011.
- G. Peskir. Continuity of the optimal stopping boundary for two-dimensional diffusions. Ann. Appl. Probab., 29(1):505–530, 2019.
- G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Springer, 2006.
- D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293. Springer Science & Business Media, 2013.
- D. G. Schaeffer. A new proof of the infinite differentiability of the free boundary in the Stefan problem. J. Diff. Equations, 20(1):266–269, 1976.
- A. Schatz. Free boundary problems of Stephan type with prescribed flux. J. Math. Anal. Appl., 28(3):569–580, 1969.
- A. N. Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media, 2007.
- A. N. Shiryaev. Stochastic disorder problems, volume 20. Springer, 2019.
- J. L. Snell. Applications of martingale system theorems. Trans. Amer. Math. Soc., 73(2):293–312, 1952.
- P. Van Moerbeke. Optimal stopping and free boundary problems. Rocky Mountain J. Math., 4(3):539–578, 1974.
- P. Van Moerbeke. An optimal stopping problem with linear reward. Acta Mathematica, 132(1):111–151, 1974.
- P. Van Moerbeke. On optimal stopping and free boundary problems. Arch. Ration. Mechanics Anal., 60(2):101–148, 1976.
- A. Wald and J. Wolfowitz. Bayes solutions of sequential decision problems. Ann. Math. Statistics, pages 82–99, 1950.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.