Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

2-torsion in instanton Floer homology (2405.16252v1)

Published 25 May 2024 in math.GT and math.DG

Abstract: This paper studies the existence of $2$-torsion in instanton Floer homology with $\mathbb{Z}$ coefficients for closed $3$-manifolds and singular knots. First, we show that the non-existence of $2$-torsion in the framed instanton Floer homology $I\sharp(S_n3(K);\mathbb{Z})$ of any nonzero integral $n$-surgery along a knot $K$ in $S3$ would imply that $K$ is fibered. Also, we show that $I\sharp(S_{r}3(K);\mathbb{Z})$ for any nontrivial $K$ with $r=1,1/2,1/4$ always has $2$-torsion. These two results indicate that the existence of $2$-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology $I\sharp(S3,K;\mathbb{Z})$ always has $2$-torsion. Finally, some crucial lemmas that help us demonstrate the existence of $2$-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot $K$ in $S3$, if there is a nonzero rational number $r$ such that the dual knot $\widetilde{K}_r$ inside $S3_r(K)$ is Floer simple, then $S3_r(K)$ must be an L-space and $K$ must be an L-space knot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Ian Agol. Chainmail links and L-spaces. ArXiv:2306.10918, v1, 2023.
  2. Deeparaj Bhat. Surgery exact triangles in instanton theory. ArXiv: 2311.04242, 2023.
  3. Naturality in sutured monopole and instanton homology. J. Differ. Geom., 100(3):395–480, 2015.
  4. Stein fillings and SU(2) representations. Geom. Topol., 22(7):4307–4380, 2018.
  5. Framed instanton homology and concordance. J. Topol., 14(4):1113–1175, 2021.
  6. Framed instanton homology and concordance II. ArXiv: 2206.11531, 2022.
  7. Khovanov homology detects the trefoils. Duke Math. J., 174(4):885–956, 2022.
  8. Instantons and L-space surgeries. J. Eur. Math. Soc. (JEMS), 25(10):4033–4122, 2023.
  9. Equivariant aspects of singular instanton Floer homology. ArXiv:1912.08982, v1, 2019.
  10. Sutured Floer homology and invariants of Legendrian and transverse knots. Geom. Topol., 21(3):1469–1582, 2017.
  11. Kim A. Frøyshov. Equivariant aspects of Yang-Mills Floer theory. Topology. Topol., 41(3):525–552, 2002.
  12. Tau invariants in monopole and instanton theories. ArXiv:1910.01758, v3, 2019.
  13. C. McA. Gordon. Dehn surgery and satellite knots. Trans. Amer. Math. Soc., 275(2):687–708, 1983.
  14. Jonathan Hanselman. Heegaard Floer homology and cosmetic surgeries in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Eur. Math. Soc. (JEMS), 25(5):1627–1669, 2023.
  15. Jonathan Hanselman. Knot Floer homology as immersed curves. Arxiv:2305.16271, v1, 2023.
  16. Matthew Hedden. Notions of positivity and the Ozsváth-Szabó concordance invariant. J. Knot Theory Ramifications, 19(5):617–629, 2010.
  17. Matthew Hedden. On Floer homology and the Berge conjecture on knots admitting lens space surgeries. Trans. Amer. Math. Soc., 363(2):949–968, 2011.
  18. Jennifer Hom. A survey on Heegaard Floer homology and concordance. J. Knot Theory Ramifications, 26(2):1740015, 24, 2017.
  19. Heegaard Floer homology for manifolds with torus boundary: properties and examples. Proc. Lond. Math. Soc. (3), 125(4):879–967, 2022.
  20. Bordered Floer homology for manifolds with torus boundary via immersed curves. J. Amer. Math. Soc., 37(2):391–498, 2024.
  21. Cabling in terms of immersed curves. Geom. Topol., 27(3):925–952, 2023.
  22. Gauge theory for embedded surfaces, ii. Topology, 34(1):37–97, 1995.
  23. Instanton Floer homology and the Alexander polynomial. Algebr. Geom. Topol., 10(3):1715–1738, 2010.
  24. Knots, sutures, and excision. J. Differ. Geom., 84(2):301–364, 2010.
  25. Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Études Sci., 113:97–208, 2011.
  26. Knot homology groups from instantons. J. Topol., 4(4):835–918, 2011.
  27. Tait colorings, and an instanton homology for webs and foams. J. Eur. Math. Soc. (JEMS), 21(1):55–119, 2019.
  28. Eun Soo Lee. The support of the Khovanov’s invariants for alternating knots. Arxiv:math.GT/0201105, v1, 2002.
  29. Eun Soo Lee. An endomorphism of the Khovanov invariant. Adv. in Math., 197(2):554–586, 2005.
  30. Zhenkun Li. Contact structures, excisions and sutured monopole Floer homology. Algebr. Geom. Topol., 20(5):2553–2588, 2020.
  31. Zhenkun Li. Gluing maps and cobordism maps in sutured monopole and instanton Floer theories. Algebr. Geom. Topol., 21(6):3019–3071, 2021.
  32. Zhenkun Li. Knot homologies in monopole and instanton theories via sutures. J. Symplectic Geom., 19(6):1339–1420, 2021.
  33. Bordered Heegaard Floer homology. Mem. Amer. Math. Soc., 254(1216):viii+279, 2018.
  34. SU(2) representations and a large surgery formula. ArXiv:2107.11005, v1, 2021.
  35. Instanton Floer homology, sutures, and Heegaard diagrams. J. Topol., 15(1):39–107, 2022.
  36. Knot surgery formulae for instanton Floer homology I: the main theorem. ArXiv:2206.10077, v2, 2022.
  37. Knot surgery formulae for instanton Floer homology II: applications. ArXiv:2209.11018, v1, 2022.
  38. Instanton Floer homology, sutures, and Euler characteristics. Quantum Topol., 14(2):201–284, 2023.
  39. On the Khovanov and knot Floer homologies of quasi-alternating links. In Proceedings of Gökova Geometry-Topology Conference 2007, pages 60–81. Gökova Geometry/Topology Conference (GGT), Gökova, 2008.
  40. Yi Ni. Knot Floer homology detects fibred knots. Invent. Math., 170(3):577–608, 2007.
  41. Knot Floer homology and the four-ball genus. Geom. Topol., 7:615–639, 2003.
  42. Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027–1158, 2004.
  43. On knot Floer homology and lens space surgeries. Topology, 44:1281–1300, 2005.
  44. Grid homology for knots and links, volume 208. American Mathematical Society, 2015.
  45. Floer simple manifolds and L-space intervals. Adv. Math., 322:738–805, 2017.
  46. Sucharit Sarkar. Moving basepoints and the induced automorphisms of link Floer homology. Algebr. Geom. Topol., 15(5):2479–2515, 2015.
  47. Christopher Scaduto. Instantons and odd Khovanov homology. J. Topol., 8(3):744–810, 2015.
  48. Alexander N. Shumakovitch. Torsion of Khovanov homology. Fund. Math., 225(1):343–364, 2014.
  49. Alexander N. Shumakovitch. Torsion in Khovanov homology of homologically thin knots. J. Knot Theory Ramif., 30(14):No. 2141015, 17 pp., 2021.
  50. Yi Xie. Earrings, sutures, and pointed links. Int. Math. Res. Not. IMRN, 2021(17):13570–13601, 2021.
  51. Yi Xie and Boyu Zhang. Instanton floer homology for sutured manifolds with tangles. ArXiv: 1907.00547, 2019.
  52. Ian Zemke. Quasistabilization and basepoint moving maps in link Floer homology. Algebr. Geom. Topol., 17(6):3461–3518, 2017.
  53. Ian Zemke. Link cobordisms and functoriality in link Floer homology. J. Topol., 12(1):94–220, 2019.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.