Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On multipoint Ward identities for superconformal line defects (2405.15846v1)

Published 24 May 2024 in hep-th

Abstract: Superconformal Ward identities are revisited in the context of superconformal line defects. Multipoint correlators of topological operators inserted on superconformal lines are studied. In particular, it is known that protected operators preserving enough of the supersymmetry become topological after performing a topological twist. By definition, such a correlator is constant in the topological limit. By analysing the topological constraint on the OPE of such operators, the correlator is further constrained away from this limit. The constraints on multipoint correlators match the known superconformal Ward identities in the case of 4-point functions. This allows for an simple and universal derivation of the superconformal Ward identities governing the multipoint correlation functions of such operators. This concept is illustrated by 1/2-BPS operators with an $su(2)$ R-symmetry and further explored in the case of the displacement multiplet on the 1/2-BPS Wilson line in 4d $\mathcal{N}=4$ super Yang-Mills theory supporting the conjectured multipoint Ward identities in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, “Defects in conformal field theory”, JHEP 1604, 091 (2016), arxiv:1601.02883.
  2. S. Giombi and S. Komatsu, “Exact Correlators on the Wilson Loop in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM: Localization, Defect CFT, and Integrability”, JHEP 1805, 109 (2018), arxiv:1802.05201, [Erratum: JHEP 11, 123 (2018)].
  3. F. A. Dolan, L. Gallot and E. Sokatchev, “On four-point functions of 1/2-BPS operators in general dimensions”, JHEP 0409, 056 (2004), hep-th/0405180.
  4. B. U. Eden, P. S. Howe, A. Pickering, E. Sokatchev and P. C. West, “Four point functions in N=2 superconformal field theories”, Nucl. Phys. B 581, 523 (2000), hep-th/0001138.
  5. M. Nirschl and H. Osborn, “Superconformal Ward identities and their solution”, Nucl. Phys. B 711, 409 (2005), hep-th/0407060.
  6. G. G. Hartwell and P. S. Howe, “(N, p, q) harmonic superspace”, Int. J. Mod. Phys. A 10, 3901 (1995), hep-th/9412147.
  7. F. A. Dolan and H. Osborn, “Conformal partial wave expansions for N=4 chiral four point functions”, Annals Phys. 321, 581 (2006), hep-th/0412335.
  8. C. Beem, L. Rastelli and B. C. van Rees, “The 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Superconformal Bootstrap”, Phys. Rev. Lett. 111, 071601 (2013), arxiv:1304.1803.
  9. L. F. Alday and A. Bissi, “Generalized bootstrap equations for 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SCFT”, JHEP 1502, 101 (2015), arxiv:1404.5864.
  10. S. M. Chester, J. Lee, S. S. Pufu and R. Yacoby, “The 𝒩=8𝒩8\mathcal{N}=8caligraphic_N = 8 superconformal bootstrap in three dimensions”, JHEP 1409, 143 (2014), arxiv:1406.4814.
  11. C. Beem, M. Lemos, P. Liendo, L. Rastelli and B. C. van Rees, “The 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 superconformal bootstrap”, JHEP 1603, 183 (2016), arxiv:1412.7541.
  12. A. V. Belitsky, S. Hohenegger, G. P. Korchemsky and E. Sokatchev, “N=4 superconformal Ward identities for correlation functions”, Nucl. Phys. B 904, 176 (2016), arxiv:1409.2502.
  13. S. Giombi, S. Komatsu, B. Offertaler and J. Shan, “Boundary reparametrizations and six-point functions on the AdS2 string”, arxiv:2308.10775.
  14. A. Antunes, S. Harris, A. Kaviraj and V. Schomerus, “Lining up a Positive Semi-Definite Six-Point Bootstrap”, arxiv:2312.11660.
  15. D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation functions in the CFT(d) / AdS(d+1) correspondence”, Nucl. Phys. B 546, 96 (1999), hep-th/9804058.
  16. L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying”, JHEP 1804, 014 (2018), arxiv:1710.05923.
  17. G. Bliard, “Notes on n-point Witten diagrams in AdS2”, J. Phys. A 55, 325401 (2022), arxiv:2204.01659.
  18. M. F. Paulos, “Towards Feynman rules for Mellin amplitudes”, JHEP 1110, 074 (2011), arxiv:1107.1504.
  19. G. Mack, “D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes”, arxiv:0907.2407.
  20. J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes”, JHEP 1103, 025 (2011), arxiv:1011.1485.
  21. P. Liendo and C. Meneghelli, “Bootstrap equations for 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM with defects”, JHEP 1701, 122 (2017), arxiv:1608.05126.
  22. P. Liendo, C. Meneghelli and V. Mitev, “Bootstrapping the half-BPS line defect”, JHEP 1810, 077 (2018), arxiv:1806.01862.
  23. A. Cavaglià, N. Gromov, J. Julius and M. Preti, “Bootstrability in defect CFT: integrated correlators and sharper bounds”, JHEP 2205, 164 (2022), arxiv:2203.09556.
  24. A. Cavaglià, N. Gromov, J. Julius and M. Preti, “Integrability and conformal bootstrap: One dimensional defect conformal field theory”, Phys. Rev. D 105, L021902 (2022), arxiv:2107.08510.
  25. P. Ferrero and C. Meneghelli, “Bootstrapping the half-BPS line defect CFT in N=4 supersymmetric Yang-Mills theory at strong coupling”, Phys. Rev. D 104, L081703 (2021), arxiv:2103.10440.
  26. J. Barrat, “Line defects in conformal field theory”, arxiv:2401.10336.
  27. G. J. S. Bliard, “Perturbative and non-perturbative analysis of defect correlators in AdS/CFT”, arxiv:2310.18137.
  28. P. Ferrero and C. Meneghelli, “Unmixing the Wilson line defect CFT. Part II: analytic bootstrap”, arxiv:2312.12551.
  29. P. Ferrero and C. Meneghelli, “Unmixing the Wilson line defect CFT. Part I. Spectrum and kinematics”, JHEP 2405, 090 (2024), arxiv:2312.12550.
  30. M. Cooke, A. Dekel and N. Drukker, “The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines”, J. Phys. A 50, 335401 (2017), arxiv:1703.03812.
  31. N. Drukker and S. Kawamoto, “Small deformations of supersymmetric Wilson loops and open spin-chains”, JHEP 0607, 024 (2006), hep-th/0604124.
  32. D. Correa, J. Henn, J. Maldacena and A. Sever, “An exact formula for the radiation of a moving quark in N=4 super Yang Mills”, JHEP 1206, 048 (2012), arxiv:1202.4455.
  33. M. R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, “Conformal perturbation theory beyond the leading order”, J. Phys. A 42, 105402 (2009), arxiv:0811.3149.
  34. D. Correa, J. Henn, J. Maldacena and A. Sever, “The cusp anomalous dimension at three loops and beyond”, JHEP 1205, 098 (2012), arxiv:1203.1019.
  35. N. Drukker and J. Plefka, “Superprotected n-point correlation functions of local operators in N=4 super Yang-Mills”, JHEP 0904, 052 (2009), arxiv:0901.3653.
  36. J. Barrat, P. Liendo, G. Peveri and J. Plefka, “Multipoint correlators on the supersymmetric Wilson line defect CFT”, JHEP 2208, 067 (2022), arxiv:2112.10780.
  37. F. Baume, M. Fuchs and C. Lawrie, “Superconformal Blocks for Mixed 1/2-BPS Correlators with S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) R-symmetry”, JHEP 1911, 164 (2019), arxiv:1908.02768.
  38. M. Cornagliotto, M. Lemos and V. Schomerus, “Long Multiplet Bootstrap”, JHEP 1710, 119 (2017), arxiv:1702.05101.
  39. I. Buric, “Harmonic Analysis in d-dimensional Superconformal Field Theory”, SIGMA 17, 007 (2021), arxiv:2009.00393.
  40. A. Bissi and T. Łukowski, “Revisiting 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 superconformal blocks”, JHEP 1602, 115 (2016), arxiv:1508.02391.
  41. I. Buric, V. Schomerus and E. Sobko, “Superconformal Blocks: General Theory”, JHEP 2001, 159 (2020), arxiv:1904.04852.
  42. A. Gimenez-Grau and P. Liendo, “Bootstrapping line defects in 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 theories”, JHEP 2003, 121 (2020), arxiv:1907.04345.
  43. L. Bianchi, G. Bliard, V. Forini, L. Griguolo and D. Seminara, “Analytic bootstrap and Witten diagrams for the ABJM Wilson line as defect CFT1”, JHEP 2008, 143 (2020), arxiv:2004.07849.
  44. J. Barrat, A. Gimenez-Grau and P. Liendo, “Bootstrapping holographic defect correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super Yang-Mills”, JHEP 2204, 093 (2022), arxiv:2108.13432.
  45. N. Drukker and J. Plefka, “The Structure of n-point functions of chiral primary operators in N=4 super Yang-Mills at one-loop”, JHEP 0904, 001 (2009), arxiv:0812.3341.
  46. C. Meneghelli and M. Trépanier, “Bootstrapping string dynamics in the 6d 𝒩𝒩\mathscr{N}script_N = (2, 0) theories”, JHEP 2307, 165 (2023), arxiv:2212.05020.
  47. F. A. Dolan and H. Osborn, “Conformal four point functions and the operator product expansion”, Nucl. Phys. B 599, 459 (2001), hep-th/0011040.
  48. S. M. Chester, J. Lee, S. S. Pufu and R. Yacoby, “Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap”, JHEP 1503, 130 (2015), arxiv:1412.0334.
  49. P. Liendo, C. Meneghelli and V. Mitev, “On Correlation Functions of BPS Operators in 3d 𝒩𝒩{\mathcal{N}}caligraphic_N = 6 Superconformal Theories”, Commun. Math. Phys. 350, 387 (2017), arxiv:1512.06072.
  50. G. Peveri, “Correlators on the Wilson Line Defect CFT”, arxiv:2310.17358.
  51. D. H. Correa, V. I. Giraldo-Rivera and M. Lagares, “On the abundance of supersymmetric strings in AdS3 × S 3 × S 3 × S 1 describing BPS line operators”, J. Phys. A 54, 505401 (2021), arxiv:2108.09380.
  52. M. Lemos and P. Liendo, “Bootstrapping 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 chiral correlators”, JHEP 1601, 025 (2016), arxiv:1510.03866.
  53. C. Beem, L. Rastelli and B. C. van Rees, “More 𝒩=4𝒩4{\mathcal{N}}=4caligraphic_N = 4 superconformal bootstrap”, Phys. Rev. D 96, 046014 (2017), arxiv:1612.02363.
  54. J. Barrat, C. Meneghelli and S. Mueller, “to appear”.
  55. N. B. Agmon and Y. Wang, “Classifying Superconformal Defects in Diverse Dimensions Part I: Superconformal Lines”, arxiv:2009.06650.
  56. L. Guerrini, “On protected defect correlators in 3d 𝒩𝒩\mathcal{N}caligraphic_N≥\geq≥ 4 theories”, JHEP 2310, 100 (2023), arxiv:2301.07035.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube