Signatures of Integrability and Exactly Solvable Dynamics in an Infinite-Range Many-Body Floquet Spin System (2405.15797v2)
Abstract: In a recent work Sharma and Bhosale [Phys. Rev. B, 109, 014412 (2024)], $N$-spin Floquet model having infinite range Ising interaction was introduced. In this paper, we generalized the strength of interaction to $J$, such that $J=1$ case reduces to the aforementioned work. We show that for $J=1/2$ the model still exhibits integrability for an even number of qubits only. We analytically solve the cases of $6$, $8$, $10$, and $12$ qubits, finding its eigensystem, dynamics of entanglement for various initial states, and the unitary evolution operator. These quantities exhibit the signature of quantum integrability (QI). For the general case of even-$N > 12$ qubits, we conjuncture the presence of QI using the numerical evidences such as spectrum degeneracy, and the exact periodic nature of both the entanglement dynamics and the time-evolved unitary operator. We numerically show the absence of QI for odd $N$ by observing a violation of the signatures of QI. We analytically and numerically find that the maximum value of time-evolved concurrence ($C_{\mbox{max}}$) decreases with $N$, indicating the multipartite nature of entanglement. Possible experiments to verify our results are discussed.
- B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems (World Scientific, 2004).
- P. E. Wormer, F. Mulder, and A. Van der Avoird, International Journal of Quantum Chemistry 11, 959 (1977).
- A. Salam, Molecular quantum electrodynamics: long-range intermolecular interactions (John Wiley & Sons, 2009).
- A. Dolgov, Physics Reports 320, 1 (1999).
- A. Nusser, S. S. Gubser, and P. Peebles, Physical Review D 71, 083505 (2005).
- L. G. van den Aarssen, T. Bringmann, and C. Pfrommer, Physical Review Letters 109, 231301 (2012).
- I. Esteban and J. Salvado, Journal of Cosmology and Astroparticle Physics 2021 (05), 036.
- P. Chomaz and F. Gulminelli, in Dynamics and thermodynamics of systems with long-range interactions (Springer, 2002) pp. 68–129.
- Y. Elskens, Microscopic dynamics of plasmas and chaos (CRC Press, 2019).
- J. Miller, Physical review letters 65, 2137 (1990).
- A. Schuckert, I. Lovas, and M. Knap, Physical Review B 101, 020416 (2020).
- A. Morningstar, N. O’Dea, and J. Richter, Physical Review B 108, L020304 (2023).
- I. Buluta and F. Nori, Science 326, 108 (2009).
- I. M. Georgescu, S. Ashhab, and F. Nori, Reviews of Modern Physics 86, 153 (2014).
- C. Gross and I. Bloch, Science 357, 995 (2017).
- X.-L. Deng, D. Porras, and J. I. Cirac, Physical Review A 72, 063407 (2005).
- J. C. Smith, D. Baillie, and P. Blakie, Physical Review A 107, 033301 (2023).
- M. Saffman, T. G. Walker, and K. Mølmer, Reviews of modern physics 82, 2313 (2010).
- A. V. Shytov, D. A. Abanin, and L. S. Levitov, Physical review letters 103, 016806 (2009).
- M. Kastner, Phys. Rev. Lett. 106, 130601 (2011).
- M. Avellino, A. J. Fisher, and S. Bose, Phys. Rev. A 74, 012321 (2006).
- P. Hauke and L. Tagliacozzo, Physical review letters 111, 207202 (2013).
- L. Colmenarez and D. J. Luitz, Physical Review Research 2, 043047 (2020).
- S. Bravyi, M. B. Hastings, and F. Verstraete, Physical review letters 97, 050401 (2006).
- A. Kuzmak, Journal of Physics A: Mathematical and Theoretical 51, 175305 (2018).
- J. Richter, O. Lunt, and A. Pal, Physical Review Research 5, L012031 (2023).
- B. Kloss and Y. B. Lev, Physical Review B 102, 060201 (2020).
- A. Duha and T. Bilitewski, (2024), arXiv:2402.18642 [quant-ph] .
- J. Marino and A. M. Rey, Phys. Rev. A 99, 051803 (2019).
- Z. Liu and P. Zhang, Physical Review Letters 132, 060201 (2024).
- B. Žunkovič and A. Zegarra, Physical Review B 109, 064309 (2024).
- M. Kumari and Á. M. Alhambra, Quantum 6, 701 (2022).
- H. Sharma and U. T. Bhosale, Phys. Rev. B 109, 014412 (2024).
- O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems (Cambridge University Press, 2003).
- A. L. Retore, J. Phys. A: Math. Theor. 55, 173001 (2022).
- H. Owusu, K. Wagh, and E. Yuzbashyan, Journal of Physics A: Mathematical and Theoretical 42, 035206 (2008a).
- A. Gubin and L. F. Santos, Am. J. Phys. 80, 246 (2012).
- E. A. Yuzbashyan and B. S. Shastry, Journal of Statistical Physics 150, 704 (2013).
- T. Gombor and B. Pozsgay, Physical Review E 104, 054123 (2021).
- M. Wadati, T. Nagao, and K. Hikami, Physica D: Nonlinear Phenomena 68, 162 (1993).
- L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach, Vol. 423 (Springer Science & Business Media, 2013).
- R. J. Baxter, Exactly solved models in statistical mechanics (Elsevier, 2016).
- M. Gaudin, The Bethe Wavefunction (Cambridge University Press, 2014).
- H. Bethe, Zeitschrift für Physik 71, 205 (1931).
- L. Faddeev, International Journal of Modern Physics A 10, 1845 (1995).
- F. Pan and J. Draayer, Physics Letters B 451, 1 (1999).
- T. Bargheer, N. Beisert, and F. Loebbert, Journal of Statistical Mechanics: Theory and Experiment 2008, L11001 (2008).
- M. V. Berry and M. Tabor, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
- U. T. Bhosale, Phys. Rev. B 104, 054204 (2021).
- H. K. Owusu, K. Wagh, and E. A. Yuzbashyan, Journal of Physics A: Mathematical and Theoretical 42, 035206 (2008b).
- S. K. Mishra, A. Lakshminarayan, and V. Subrahmanyam, Phys. Rev. A 91, 022318 (2015).
- R. Pal and A. Lakshminarayan, Phys. Rev. B 98, 174304 (2018).
- G. K. Naik, R. Singh, and S. K. Mishra, Phys. Rev. A 99, 032321 (2019).
- A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71, 062334 (2005).
- T. J. Apollaro, G. M. Palma, and J. Marino, Physical Review B 94, 134304 (2016).
- B. Bertini, P. Kos, and T. c. v. Prosen, Phys. Rev. X 9, 021033 (2019).
- R. K. Shukla and S. K. Mishra, Phys. Rev. A 106, 022403 (2022).
- F. Haake, M. Kus, and R. Scharf, Z. Phys. B 65, 381 (1987).
- S. Dogra, V. Madhok, and A. Lakshminarayan, Phys. Rev. E 99, 062217 (2019).
- Z. Li, S. Choudhury, and W. V. Liu, Phys. Rev. Res. 2, 043399 (2020).
- C. Yin and A. Lucas, Phys. Rev. A 102, 022402 (2020).
- Z. Li, S. Choudhury, and W. V. Liu, Phys. Rev. A 104, 013303 (2021).
- S.-S. Li, R.-Z. Huang, and H. Fan, Phys. Rev. B 106, 024309 (2022).
- D. Wanisch, J. D. Arias Espinoza, and S. Fritzsche, Phys. Rev. B 107, 205127 (2023).
- U. T. Bhosale and M. S. Santhanam, Phys. Rev. E 98, 052228 (2018).
- R. J. Glauber and F. Haake, Phys. Rev. A 13, 357 (1976).
- R. R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001).
- F. Buscemi, P. Bordone, and A. Bertoni, Phys. Rev. A 75, 032301 (2007).
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000).
- G. Benenti, G. Casati, and G. Strini, Principles of quantum computation and information: Basic tools and special topics, Vol. 2 (World scientific, 2004).
- W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
- W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).
- V. S. Vijayaraghavan, U. T. Bhosale, and A. Lakshminarayan, Phys. Rev. A 84, 032306 (2011).
- Refer supplementry material for detailed calculations .
- J. Román-Roche, V. Herráiz-López, and D. Zueco, Phys. Rev. B 108, 165130 (2023).
- S. Szalay, Physical Review A 92, 042329 (2015).
- H. Li, T. Gao, and F. Yan, Physical Review A 109, 012213 (2024).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.