i-PI 3.0: a flexible and efficient framework for advanced atomistic simulations (2405.15224v2)
Abstract: Atomic-scale simulations have progressed tremendously over the past decade, largely due to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques, thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.
- O. A. von Lilienfeld and K. Burke, Retrospective on a decade of machine learning for chemical discovery, Nature Communications 11, 4895 (2020).
- V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 1902765 (2019).
- J. Behler, First principles neural network potentials for reactive simulations of large molecular and condensed systems, Angewandte Chemie International Edition 56, 12828 (2017).
- S. Ma and Z.-P. Liu, Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: Current status and future, ACS Catalysis 10, 13213 (2020).
- V. L. Deringer and G. Csányi, Machine learning based interatomic potential for amorphous carbon, Physical Review B 95, 094203 (2017).
- M. Ceriotti, J. More, and D. E. Manolopoulos, i-pi: A python interface for ab initio path integral molecular dynamics simulations, Computer Physics Communications 185, 1019 (2014).
- J. Lan, V. V. Rybkin, and A. Pasquarello, Temperature dependent properties of the aqueous electron, Angewandte Chemie International Edition 61, e202209398 (2022).
- K. Fidanyan, G. Liu, and M. Rossi, Ab initio study of water dissociation on a charged Pd(111) surface, The Journal of Chemical Physics 158, 094707 (2023), 2212.08855 .
- J. J. Mortensen, GPAW: An open Python package for electronic structure calculations, The Journal of Chemical Physics 160, 092503 (2024).
- T. E. Markland and D. E. Manolopoulos, An efficient ring polymer contraction scheme for imaginary time path integral simulations, The Journal of Chemical Physics 129, 024105 (2008a).
- T. E. Markland and D. E. Manolopoulos, A refined ring polymer contraction scheme for systems with electrostatic interactions, Chem. Phys. Lett. 464, 256 (2008b).
- V. Kapil, J. VandeVondele, and M. Ceriotti, Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods, The Journal of Chemical Physics 144, 054111 (2016a).
- G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physiscal Review B 54, 11169 (1996).
- G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 14101 (2007a).
- M. Ceriotti, G. Bussi, and M. Parrinello, Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations, Physical Review Letters 102, 020601 (2009a).
- M. Ceriotti, G. Bussi, and M. Parrinello, Colored-Noise Thermostats à la Carte, Journal of Chemical Theory and Computation 6, 1170 (2010b).
- M. Ceriotti, G. Bussi, and M. Parrinello, Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat, Physical Review Letters 103, 30603 (2009b).
- M. Ceriotti and M. Parrinello, The δ𝛿\deltaitalic_δ-thermostat: selective normal-modes excitation by colored-noise Langevin dynamics, Procedia Computer Science 1, 1607 (2010).
- M. Ceriotti and D. E. Manolopoulos, Efficient First-Principles Calculation of the Quantum Kinetic Energy and Momentum Distribution of Nuclei, Physical Review Letters 109, 100604 (2012).
- M. Rossi, V. Kapil, and M. Ceriotti, Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation, The Journal of Chemical Physics 148, 102301 (2018).
- M. Hijazi, D. M. D. Wilkins, and M. Ceriotti, Fast-forward Langevin dynamics with momentum flips, The Journal of Chemical Physics 148, 184109 (2018).
- F. R. Krajewski and M. Parrinello, Linear scaling electronic structure calculations and accurate statistical mechanics sampling with noisy forces, Physical Review B 73, 041105 (2006).
- G. Bussi, T. Zykova-Timan, and M. Parrinello, Isothermal-isobaric molecular dynamics using stochastic velocity rescaling, The Journal of Chemical Physics 130, 074101 (2009).
- P. Raiteri, J. D. Gale, and G. Bussi, Reactive force field simulation of proton diffusion in bazro3 using an empirical valence bond approach, Journal of Physics: Condensed Matter 23, 334213 (2011).
- G. J. Martyna, A. Hughes, and M. E. Tuckerman, Molecular dynamics algorithms for path integrals at constant pressure, The Journal of Chemical Physics 110, 3275 (1999).
- G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics 113, 9901 (2000).
- G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, The Journal of Chemical Physics 113, 9978 (2000).
- M. Rossi, P. Gasparotto, and M. Ceriotti, Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol, Physical Review Letters 117, 115702 (2016).
- B. Cheng, J. Behler, and M. Ceriotti, Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments, The Journal of Physical Chemistry Lettersrs 7, 2210 (2016).
- I. R. Craig and D. E. Manolopoulos, Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics, The Journal of Chemical Physics 121, 3368 (2004).
- J. Cao and G. A. Voth, A new perspective on quantum time correlation functions, The Journal of Chemical Physics 99, 10070 (1993).
- J. Cao and G. A. Voth, The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics, The Journal of Chemical Physics 101, 6168 (1994).
- M. Rossi, M. Ceriotti, and D. E. Manolopoulos, How to remove the spurious resonances from ring polymer molecular dynamics., The Journal of Chemical Physics 140, 234116 (2014a).
- V. Kapil, J. Behler, and M. Ceriotti, High order path integrals made easy, The Journal of Chemical Physics 145, 234103 (2016b).
- I. Poltavsky and A. Tkatchenko, Modeling quantum nuclei with perturbed path integral molecular dynamics, Chemical Science 7, 1368 (2016).
- V. Kapil, A. Cuzzocrea, and M. Ceriotti, Anisotropy of the Proton Momentum Distribution in Water, The Journal of Physical Chemistry B 122, 6048 (2018).
- T. M. Yamamoto, Path-integral virial estimator based on the scaling of fluctuation coordinates: Application to quantum clusters with fourth-order propagators, The Journal of Chemical Physics 123, 104101 (2005).
- M. Ceriotti and T. E. Markland, Efficient methods and practical guidelines for simulating isotope effects., The Journal of Chemical Physics 138, 014112 (2013).
- S. S. Jang and G. A. Voth, Applications of higher order composite factorization schemes in imaginary time path integral simulations, The Journal of Chemical Physics 115, 7832 (2001).
- B. Hirshberg, V. Rizzi, and M. Parrinello, Path integral molecular dynamics for bosons, Proceedings of the National Academy of Sciences 116, 21445 (2019).
- Y. M. Y. Feldman and B. Hirshberg, Quadratic scaling bosonic path integral molecular dynamics, The Journal of Chemical Physics 159, 154107 (2023).
- B. Hirshberg, M. Invernizzi, and M. Parrinello, Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality, The Journal of Chemical Physics 152, 171102 (2020).
- T. E. Li, J. E. Subotnik, and A. Nitzan, Cavity Molecular Dynamics Simulations of Liquid Water under Vibrational Ultrastrong Coupling, Proc. Natl. Acad. Sci. 117, 18324 (2020).
- T. Hasegawa and Y. Tanimura, Calculating fifth-order Raman signals for various molecular liquids by equilibrium and nonequilibrium hybrid molecular dynamics simulation algorithms, The Journal of Chemical Physics 125, 074512 (2006).
- T. Begušić and G. A. Blake, Two-dimensional infrared-raman spectroscopy as a probe of water’s tetrahedrality, Nature Communications 14, 1950 (2023).
- M. Kellner and M. Ceriotti, Uncertainty quantification by direct propagation of shallow ensembles (2024), arXiv:2402.16621 .
- G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 014101 (2007b).
- M. Suzuki, Hybrid exponential product formulas for unbounded operators with possible applications to Monte Carlo simulations, Physics Letters A 201, 425 (1995).
- B. Leimkuhler and C. Matthews, Robust and efficient configurational molecular sampling via Langevin dynamics, The Journal of Chemical Physics 138 (2013).
- J. Nagle, Congestion control in ip/tcp internetworks, SIGCOMM Comput. Commun. Rev. 14, 11–17 (1984).
- D. M. Ceperley, Path integrals in the theory of condensed helium, Reviews of Modern Physics 67, 279 (1995).
- C. W. Myung, B. Hirshberg, and M. Parrinello, Prediction of a supersolid phase in high-pressure deuterium, Physical Review Letters 128, 045301 (2022).
- M. Head‐Gordon and J. C. Tully, Molecular dynamics with electronic frictions, The Journal of Chemical Physics 103, 10137 (1995).
- W. Dou and J. E. Subotnik, Perspective: How to understand electronic friction, The Journal of Chemical Physics 148, 230901 (2018).
- R. Martinazzo and I. Burghardt, Quantum theory of electronic friction, Physical Review A 105, 052215 (2022a).
- R. Martinazzo and I. Burghardt, Quantum dynamics with electronic friction, Physical Review Letters 128, 206002 (2022b).
- R. Martinazzo and I. Burghardt, Quantum hydrodynamics of coupled electron-nuclear systems (2023), arXiv:2310.08766 .
- J. O. Richardson, Ring-polymer instanton theory, International Reviews in Physical Chemistry 37, 171 (2018).
- Y. Litman and M. Rossi, Multidimensional hydrogen tunneling in supported molecular switches: The role of surface interactions, Physical Review Letters 125, 216001 (2020).
- C. L. Box, W. G. Stark, and R. J. Maurer, Ab initio calculation of electron-phonon linewidths and molecular dynamics with electronic friction at metal surfaces with numeric atom-centred orbitals, Electronic Structure 5, 035005 (2023).
- J. O. Richardson and S. C. Althorpe, Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory, The Journal of Chemical Physics 131, 214106 (2009).
- Y. Litman, Tunneling and Zero-Point Energy Effects in Multidimensional Hydrogen Transfer Reactions: From Gas Phase to Adsorption on Metal Surfaces, Ph.D. thesis, Freie Universität Berlin (2020).
- A. S. Disa, T. F. Nova, and A. Cavalleri, Engineering crystal structures with light, Nature Physics 17, 1087 (2021).
- D. M. Juraschek, M. Fechner, and N. A. Spaldin, Ultrafast structure switching through nonlinear phononics, Physical Review Letters 118, 054101 (2017).
- A. Subedi, A. Cavalleri, and A. Georges, Theory of nonlinear phononics for coherent light control of solids, Physical Review B 89, 220301 (2014).
- N. A. Spaldin, A beginner’s guide to the modern theory of polarization, Journal of Solid State Chemistry 195, 2 (2012), polar Inorganic Materials: Design Strategies and Functional Properties.
- H. Partridge and D. W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data, The Journal of Chemical Physics 106, 4618 (1997).
- G. Kunapuli, Ensemble Methods for Machine Learning (Manning, 2023).
- J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, Physical Review Letters 98, 146401 (2007).
- A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Physical Review B 87, 184115 (2013).
- U. R. Pedersen, F. Hummel, and C. Dellago, Computing the crystal growth rate by the interface pinning method., The Journal of Chemical Physics 142, 44104 (2015).
- G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics 23, 187 (1977).
- J. Fregoni, F. J. Garcia-Vidal, and J. Feist, Theoretical Challenges in Polaritonic Chemistry, ACS Photonics 9, 1096 (2022).
- M. Ruggenthaler, D. Sidler, and A. Rubio, Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics, Chemical Reviews 123, 11191 (2023).
- J. P. Long and B. S. Simpkins, Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit, ACS Photonics 2, 130 (2015).
- T. E. Li, A. Nitzan, and J. E. Subotnik, Cavity Molecular Dynamics Simulations of Vibrational Polariton-Enhanced Molecular Nonlinear Absorption, The Journal of Chemical Physics 154, 094124 (2021).
- T. E. Li, A. Nitzan, and J. E. Subotnik, Energy-Efficient Pathway for Selectively Exciting Solute Molecules to High Vibrational States via Solvent Vibration-Polariton Pumping, Nature Communications 13, 4203 (2022c).
- T. E. Li and S. Hammes-Schiffer, QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics, Journal of American Chemical Society 145, 377 (2023).
- M. Parrinello and A. Rahman, Study of an F center in molten KCl, The Journal of Chemical Physics 80, 860 (1984).
- T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe, Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics”, The Journal of Chemical Physics 142, 134103 (2015).
- S. C. Althorpe, Path-integral approximations to quantum dynamics, The European Physical Journal B 94, 155 (2021).
- M. Rossi, M. Ceriotti, and D. E. Manolopoulos, How to remove the spurious resonances from ring polymer molecular dynamics, The Journal of Chemical Physics 140, 234116 (2014b).
- M. J. Willatt, M. Ceriotti, and S. C. Althorpe, Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice, The Journal of Chemical Physics 148, 102336 (2018).
- G. Trenins, M. J. Willatt, and S. C. Althorpe, Path-integral dynamics of water using curvilinear centroids, The Journal of Chemical Physics 151, 054109 (2019).
- A. Singraber, J. Behler, and C. Dellago, Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials, Journal of Chemical Theory and Computation 15, 1827 (2019).
- S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).
- P. Seliya, M. Bonn, and M. Grechko, On selection rules in two-dimensional terahertz–infrared–visible spectroscopy, The Journal of Chemical Physics 160, 034201 (2024).
- K. A. Jung, P. E. Videla, and V. S. Batista, Inclusion of nuclear quantum effects for simulations of nonlinear spectroscopy, The Journal of Chemical Physics 148, 244105 (2018).
- F. Aryasetiawan and F. Nilsson, Downfolding Methods in Many-Electron Theory (AIP Publishing LLC, 2022) https://pubs.aip.org/book-pdf/12252618/9780735422490.pdf .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.