Papers
Topics
Authors
Recent
Search
2000 character limit reached

AGILE: A Novel Reinforcement Learning Framework of LLM Agents

Published 23 May 2024 in cs.LG | (2405.14751v2)

Abstract: We introduce a novel reinforcement learning framework of LLM agents named AGILE (AGent that Interacts and Learns from Environments) designed to perform complex conversational tasks with users, leveraging LLMs, memory, tools, and interactions with experts. The agent possesses capabilities beyond conversation, including reflection, tool usage, and expert consultation. We formulate the construction of such an LLM agent as a reinforcement learning (RL) problem, in which the LLM serves as the policy model. We fine-tune the LLM using labeled data of actions and the PPO algorithm. We focus on question answering and release a dataset for agents called ProductQA, comprising challenging questions in online shopping. Our extensive experiments on ProductQA, MedMCQA and HotPotQA show that AGILE agents based on 7B and 13B LLMs trained with PPO can outperform GPT-4 agents. Our ablation study highlights the indispensability of memory, tools, consultation, reflection, and reinforcement learning in achieving the agent's strong performance. Datasets and code are available at https://github.com/bytarnish/AGILE.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.