Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid modelling of reactive transport in porous media using machine learning: limitations and solutions (2405.14548v1)

Published 23 May 2024 in cs.CE

Abstract: Reactive transport in porous media plays a pivotal role in subsurface reservoir processes, influencing fluid properties and geochemical characteristics. However, coupling fluid flow and transport with geochemical reactions is computationally intensive, requiring geochemical calculations at each grid cell and each time step within a discretized simulation domain. Although recent advancements have integrated machine learning techniques as surrogates for geochemical simulations, ensuring computational efficiency and accuracy remains a challenge. This chapter investigates machine learning models as replacements for a geochemical module in a reactive transport in porous media simulation. We test this approach on a well-documented cation exchange problem. While the surrogate models excel in isolated predictions, they fall short in rollout predictions over successive time steps. By introducing modifications, including physics-based constraints and tailored dataset generation strategies, we show that machine learning surrogates can achieve accurate rollout predictions. Our findings emphasize that, when judiciously designed, machine learning surrogates can substantially expedite the cation exchange problem without compromising accuracy, offering significant potential for a range of reactive transport applications.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com