Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media (2307.04449v2)

Published 10 Jul 2023 in physics.comp-ph and cs.LG

Abstract: Numerical simulation of multi-phase fluid dynamics in porous media is critical for many energy and environmental applications in Earth's subsurface. Data-driven surrogate modeling provides computationally inexpensive alternatives to high-fidelity numerical simulators. While the commonly used convolutional neural networks (CNNs) are powerful in approximating partial differential equation solutions, it remains challenging for CNNs to handle irregular and unstructured simulation meshes. However, simulation models for Earth's subsurface often involve unstructured meshes with complex mesh geometries, which limits the application of CNNs. To address this challenge, we construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media. We propose a new GCN architecture suited to the hyperbolic character of the coupled PDE system, to better capture transport dynamics. Results of 2D heterogeneous test cases show that our surrogates predict the evolutions of pressure and saturation states with high accuracy, and the predicted rollouts remain stable for multiple timesteps. Moreover, the GCN-based models generalize well to irregular domain geometries and unstructured meshes that are unseen in the training dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jiamin Jiang (7 papers)
  2. Bo Guo (7 papers)

Summary

We haven't generated a summary for this paper yet.